ENGINEERING MATHEMATICS LECTURE NOTE

Based on New syllabus (2018-19) circulated by SCTE&VT, Odisha for 1st and 2nd Semester Diploma Engineering courses approved by AICTE, New Delhi

PREPARED BY

Manas Kumar Mahalik

Lecturer (Mathematics), Department of Mathematics & Science Govt. Polytechnic Kalahandi

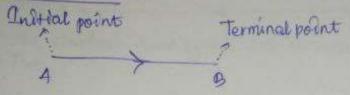
Vector Algebra

Vector + Physical quantities having both magnitude and direction are called deton Ex- Weight, displacement, velocity, acceleration etc.

Scalar :- Physical quantities having only magnitude and no direction are called Scalars.

Er - Speed, Mass, volume, energy etc.

Representation of a vector



Generally a vector is denoted by a small letter with arrow head. $\overline{AB}^{*} = \overline{a}^{*}$

Here, magnitude of $\overline{AB} = \overline{AB}$ Direction is from A towards B.

types of vectors

(i) Zero vector / Null vector : A & vector which that whose magnitude is o' is called zero vector.

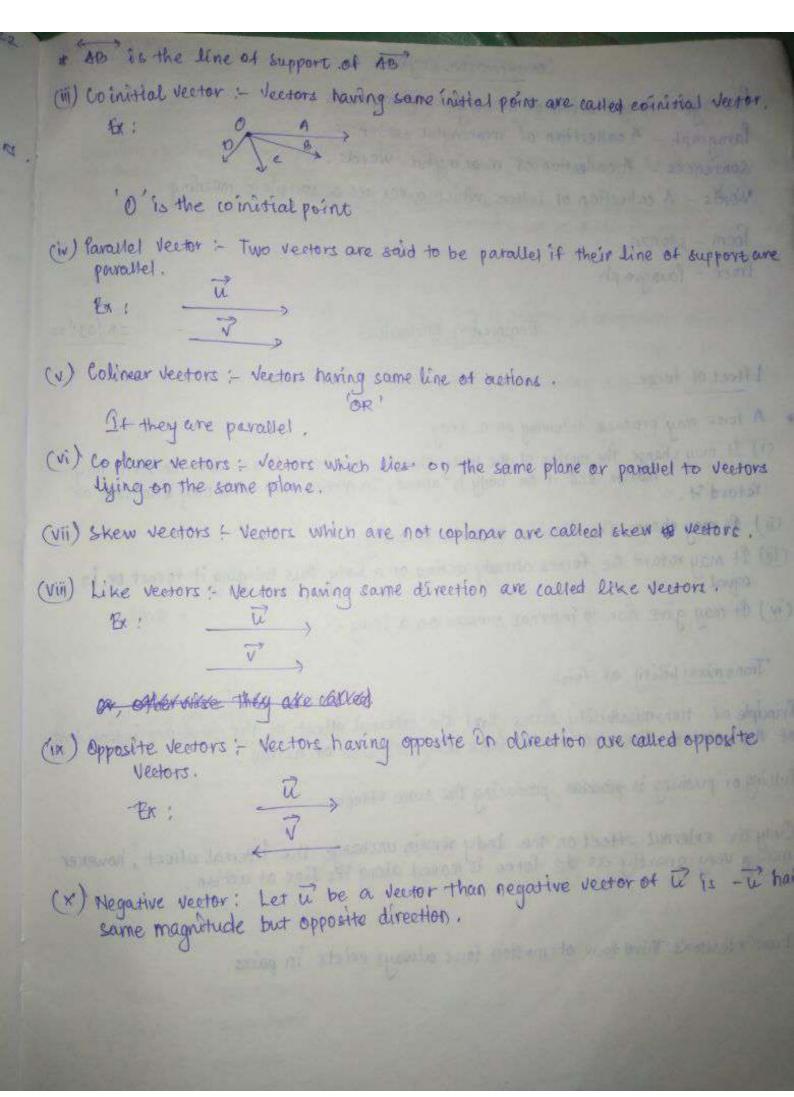
It is a zero vector than $|\vec{u}| = 0$ Magnitude of \vec{u}

* A zero rector has no definite direction

(ii) Unit vector :- A vector whose meignitude is unity or 11' is called a unit vector.

* If it is a unit vector then |u|=1

* Unit vector of \vec{u} is denoted by \hat{u} and \hat{v} defined by. $\begin{bmatrix} \hat{u} & -\frac{\vec{u}}{2} \\ -\frac{\vec{u}}{2} \end{bmatrix} \xrightarrow{\Rightarrow} \vec{u} = \begin{bmatrix} \vec{u} \end{bmatrix} \hat{u}$

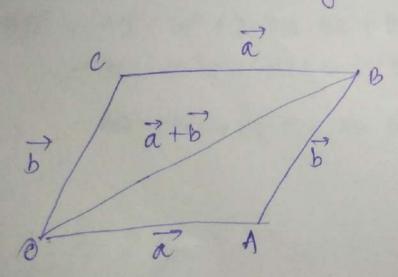


Multiplication of a vector by a scalar

Let \vec{u} be a vector. Let α be a scalar then multiplication of \vec{u} by α is a vector $\vec{x}\vec{u}$ whose magnitude is $\alpha |\vec{u}|$ and direction t(i) same as \vec{u} if $\alpha > 0$. (ii) some as \vec{u} if $\alpha < 0$. * If $\alpha = 0$ then $\alpha \vec{u} = \vec{0}$

28/03/2023

Addition of two vectors (Parallelogram law of vector addition)



Let à and b two vectors represented by two sides of a parallelo gram taken in order then their sum is represented by the diagonal of the parallelog mon whose initial point is same as initial point of a.

$$\overrightarrow{AB} = \overrightarrow{a}$$

$$\overrightarrow{AB} = \overrightarrow{b}$$
Then, $\overrightarrow{a'} + \overrightarrow{b'} = \overrightarrow{OA} + \overrightarrow{AB}$

$$= \overrightarrow{OB}$$

The vector a - B is represented by the other diagonal of the parallelogram within point is the terminal point of B.

à is additive inverse of b and b is called additive inverse of à.

Properties of vector addition

(i) Vector addition is commutative. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (i) Vector addition is associative $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ (ii) Vector addition is distributive $\alpha (\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$ $(\alpha + p) \vec{a} = \alpha \vec{a} + p \vec{a}$ (iv) $(\alpha p) \vec{a} = \alpha (p \vec{a})$ (v) $1\vec{a} = \vec{a}$ (v) $\vec{a} = \vec{b}$ (v) $\vec{a} = \vec{b}$ (v) $\vec{a} = \vec{b}$ (v) $\vec{a} = \vec{b}$ (v) $\vec{a} = \vec{a}$ (v) $\vec{a} = \vec{a}$ (v) $\vec{a} = \vec{a}$ (v) $\vec{a} = \vec{a}$ Position vector

and and a two versors represented by two sieles of a parialelo a

 $\vec{OP} = \vec{P}$ $\vec{OQ} = \vec{Q}$

Let o'be a timed point. Then the vector of is called the position vector of point'p' velative to '0'. similarly of is the position vector of point'& 'velative to '0'. Here, $\overrightarrow{OP} + \overrightarrow{PQ} = \overrightarrow{OQ}$ $\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ = Position vector of Q - position vector of P

= $q^2 - p^2$

Resolution of a vector into components

ENGIA. MATHEMATICS

1 2 1 2 100 1

u <u>is a 2D Veetor</u> u = x € + yĵ x, y ave scalar components. x €, is vector component along x-axis yĵ, is vector component along y-axis.

 $\vec{u} = \chi \hat{z} + y \hat{j} + z \hat{k}$

x2, is vector component along x-axis. Y1, is vector component along y-axis. zk, is vector component along z-axis.

Modulus

$$\vec{u} = \alpha \hat{z} + y \hat{j} + z \hat{k}$$
$$|\vec{u}| = |\alpha^2 + y^2 + z^2$$

 $fx - Find modulus of <math>a^2 = \hat{z} - \hat{j} + 3\hat{k}$ soln - $|a^2| = \sqrt{1^2 + (-1)^2 + 3^2}$ $= \sqrt{1 + 1 + 9}$ $= \sqrt{11}$

Unit vector

$$\hat{a} = \frac{\vec{a}}{|\vec{a}'|} = \frac{\hat{z} - \hat{j} + 3\hat{k}}{11} = \frac{1}{11}\hat{z} - \frac{1}{11}\hat{j} + \frac{3}{11}\hat{k}$$

$$ds = \text{ find the modulus and unit vector in the direction of the sum of the vectors}$$

$$\frac{2+4j+2k}{2+4j+2k}, 32-3j-2k \text{ and} -22+2j+6k.$$
soln =
$$Lat_{j} \vec{a} = \frac{2}{2} + 4j + 2k$$

$$\vec{b} = 32 \neq -3j - 2k$$

$$\vec{c} = -22 + 2j + 6k$$
Let $\vec{r} = \vec{a} + \vec{b} + \vec{c}$

$$= (4+3-2)\vec{c} + (4-3+2)\vec{j} + (2-2+6)\vec{k}$$

$$\vec{v} = 22^{2} + 3j + 6k$$
Now, $(\vec{v}) = \sqrt{2^{2}+3^{2}+6^{2}}$

$$= \sqrt{4+9} + 36$$

$$= \sqrt{4+9} = 7$$

$$\hat{r} = \frac{\vec{r}}{1\vec{r}'1} = \frac{2z^{2}+3j^{2}+6k}{7} \neq 0$$

$$= \frac{2}{7}\vec{z} + \frac{3}{7}\vec{j} + \frac{6}{7}\vec{k}$$

Ex - Find the vector joining the points (2, -3) and (-1, 1). find its magnitude and unit vector along the same divection. Also determine the scalar components and components vectors along the co-ordinate axis.

Soln -

$$\vec{a} = \text{Position vector of } \vec{b} - \text{Position vector of } \vec{A}$$

= $(-1-2)\cdot\vec{c} + (1-(-3))\cdot\vec{j}$
= $-3\hat{c} + 4\hat{j}$
 $|\vec{a}| = \sqrt{(-3)^2 + (4)^2}$
= $\sqrt{9+16} = \sqrt{25}$
= 5

$$\begin{bmatrix} a^{2} \end{bmatrix} \qquad 5 \qquad -\frac{1}{5} = 2 + \frac{1}{5} \end{bmatrix}$$
So, Scalar components are $-\frac{3}{5}$ and $\frac{4}{5}$
Components Vectors are $-\frac{3}{5}$ 2 and $\frac{4}{5}$ 3 along x-axis and y-axis
respectively.

$$\begin{bmatrix} x - 4 \end{bmatrix} \text{ the position vectors of two points A and B are $+\frac{2}{5} + \frac{3}{5} + \frac{1}{5} \\ \text{and } 2 + 5 + \frac{4}{5} \\ \text{vector of } A = \pm 2 + \frac{3}{5} + \frac{1}{5} \\ \text{Soln- Position vector of } B = 22 - 5 + \frac{4}{5} \\ \text{Fosition vector of } B = 22 - 5 + \frac{4}{5} \\ \text{Fosition vector of } B = 22 - 5 + \frac{4}{5} \\ = -52 + 4 - 8 + \frac{3}{5} + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} \\ = -52 + 4 - 8 + \frac{3}{5} \\ = \sqrt{25 + 64 + 4} \\ = \sqrt{45} \\ = -52 - 8 + \frac{3}{5} \\ = -52 - 8 + \frac{3}{5} \\ \end{bmatrix}$$$

- 3

 $\frac{AB}{AB} = \frac{AB}{1\overline{AB}} = \frac{-5\widehat{z} - 8\widehat{j} + 3\widehat{k}}{\sqrt{98}}$

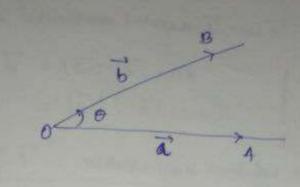
$$\frac{-5}{198} \frac{2}{2} - \frac{8}{198} \frac{1}{1} + \frac{3}{198} \frac{1}{1} \frac{3}{1} \frac{1}{1} \frac$$

Divections cosines are

à =]

- 32 + 45

$$=\left\langle \frac{-5}{\sqrt{q_{s}}}, \frac{-8}{\sqrt{q_{s}}}, \frac{3}{\sqrt{q_{s}}} \right\rangle$$



Let $\vec{a} = \vec{e}\vec{A}$ $\vec{b} = \vec{e}\vec{B}$ $\theta = \text{inclination}$ between \vec{a} and \vec{b} Define $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$ The RHS of (\underline{a}) is a scalar, so $\vec{a} \cdot \vec{b}$ is called scalar product. $\vec{b} \cdot \vec{a} = |\vec{b}| |\vec{a}| \cos\theta$ $= |\vec{a}| |\vec{b}| \cos\theta$ $= |\vec{a}| |\vec{b}| \cos\theta$

 \bigcirc

) scalar product / dot product is commutative.

 $\overrightarrow{a} \cdot \overrightarrow{b} = (\overrightarrow{a} \mid 1\overrightarrow{b}) \cos \theta$ $\overrightarrow{a} \cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|}$ $\overrightarrow{\theta} = \cos^{-2} \left(\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|} \right)$

XT-1

This is the angle between two vectors.

*
$$\vec{a} \perp \vec{b}$$
, $\vartheta = q0^{\circ}$
Then,
 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos q0^{\circ}$
 $= 0$

so, two vectors are perpendicular iff their dot product is zero.

*
$$\hat{a} \cdot \hat{a} = [\hat{a}] |\hat{a}| |\cos \theta$$

 $\hat{a} \cdot \hat{a} = [\hat{a}] |\hat{a}| |\cos \theta$
 $\hat{a} \cdot \hat{a} = 1$
 $\hat{a} \cdot \hat{a} = 1$
 $\hat{a} \cdot \hat{a} = 0$
 $\hat{b} \cdot \hat{a} = 1$
 $\hat{b} \cdot \hat{b} = 1$
 $\hat{b} = 1$

BM + 04

$$\vec{x} = \vec{0}\vec{A}$$

 $\vec{B} = \vec{0}\vec{B}$
 $\vec{\theta} = inclination between \vec{a} and \vec{b}
 $\vec{a} \cdot \vec{b} = |\vec{a}'| |\vec{b}| |\vec{0}| |\vec{0}| \vec{0}| \vec{0}|$$

★ If
$$\vec{a} = a_{1}\vec{r} + a_{2}\vec{j} + a_{3}\vec{k}$$

$$\vec{b} = b_{1}\vec{r} + b_{2}\vec{j} + b_{3}\vec{k}$$

$$\vec{a} \cdot \vec{b} = a_{1}b_{2} + a_{2}b_{2} + a_{3}b_{3}$$

$$\vec{a} \cdot \vec{b} = a_{1}b_{2} + a_{2}b_{2} + a_{3}b_{3}$$

$$\vec{b} = c + 2\vec{j} - 5\vec{k}$$

$$\vec{a} \cdot \vec{b} = (2 \times 1) + (-1 \times 2) + (3 \times (-5))$$

$$= 2 + (-2) + (-15)$$

$$= 2 - 2 - 15$$

$$= -15$$

ENGENEERING MATHEMATICS

02/04/202

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ $Oos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$ Scalar product o projection of \vec{a} on \vec{b} $= \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ Scalar projection of \vec{b} on \vec{a} $= \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

Nector projection of a on b

$$=\left(\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{b}|^2}\right)\overrightarrow{b}$$

vector projection of Bona

$$=\left(\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|^2}\right)\vec{a}$$

 $\begin{array}{rcl}
\hat{J} & \hat{a} \perp \hat{b} \\
\Rightarrow \hat{a}, \hat{b} = 0 \\
\hat{z}, \hat{j} = 0 \\
\hat{j}, \hat{k} = 0 \\
\hat{k}, \hat{z} = 0
\end{array}$

We find the scalar and vector projections of the vector
$$2\beta - 4\beta - 6\beta = 0$$
 the
line joining the points $(3, 4, -2)$ and $(5, 6, -3)$.
Soln - Let $\vec{a}^* = 2\hat{s} - 3\hat{j} - 6\hat{k}$
Let \vec{b} be the $\hat{j}\hat{a}$ vector joining $(3, 4, -2)$ and $(5, 6, -3)$
 $\Rightarrow \vec{b} \pm (5-3)\hat{s} + (6-4)\hat{s} + (-3+2)\hat{k}$
 $= 2\hat{s} + 2\hat{j} - \hat{k}$
Now,
Scalar projection of \vec{a}^* on \vec{b}^*
 $= (2\hat{s} - 3\hat{j} - 6\hat{k}) \cdot (2\hat{s} + 2\hat{j} - \hat{k}) \cdot (2\hat{s}^2 + 2\hat{s} + (-1)\hat{s})$
 $= (2\times 2)\hat{s} + (-3)\times 2\hat{s} + (-4)\times(-1)\hat{s}$
 $= (2\times 2)\hat{s} + (-3)\times 2\hat{s} + (-4)\times(-1)\hat{s}$
 $= (\frac{a^* \cdot b^*}{3} = -\frac{4}{3}$
Vector projection of \vec{a}^* on \vec{b}^*
 $= (\frac{a^* \cdot b}{(1\hat{b})^2})\hat{t}$
 $= (\frac{a^* \cdot b}{(1\hat{b})^2})\hat{t}$

$$=\frac{4}{9}\left(2\hat{\tau}+2\hat{j}-\hat{k}\right)$$

$$=\frac{9}{9}\hat{z}+\frac{9}{9}\hat{j}-\frac{4}{9}\hat{x}$$

Ani

the Q. Find the scalar and vector projection of the vector 2-j-k on 32+j+ Leta' · 2- j- k 8dn -B = 32+j+3k Now, scalar projection of a on B $=\frac{\vec{a}\cdot\vec{b}}{1\vec{b}}$ $=(\hat{z}-\hat{j}-\hat{k})\cdot(3\hat{z}+\hat{j}+3\hat{k})$ 132+12+32 $= (1 \times 3) + (-1) \times 1 + (-1) \times 3$ 119 = 3 + (-1) + (-3)VIA $= \frac{3-1-3}{119} = -\frac{1}{119}$ 2 6 8 7 Neutor projection of a on b $z\left(\frac{\vec{a}\cdot\vec{b}}{|\vec{b}|^2}\right)\vec{b}$ $= \left(\frac{-1}{(\sqrt{1q})^2}\right) \left(3\hat{z}+\hat{j}+3\hat{k}\right)$ $=\frac{-4}{19}(3\hat{2}+\hat{3}+3\hat{k})$

R. The metador product and angle between
$$\overline{a}^{*}$$
 and \overline{b}^{*} , $\overline{a}^{*} = (2, -2, 2)$ and
 $\overline{b}^{*} = (0, 2, 4)$.
solve $\overline{a}^{*} = 2\hat{z}^{*} - 2\hat{j} + \hat{k}$
 $\overline{a}^{*} \cdot \overline{b}^{*} = (2\hat{z}^{*} - 2\hat{j} + \hat{k})(2\hat{j} + 4\hat{k}))$
 $= 2x0 + (-2)x2 + 2x4$
 $= 0 + (-4) + 4$
 $= -4 + 4$
 $= 0$
 $\overline{a}^{*} \cdot \overline{b}^{*} = 0$
 $\overline{b}^{*} = 2 \cos^{-1} \left(\frac{\overline{a}^{*} \cdot \overline{b}^{*}}{|\overline{a}^{*}||\overline{b}^{*}|} \right)$
 $= \frac{0}{|\overline{a}^{*}||\overline{b}^{*}|} = 0$
 $\overline{b}^{*} = \cos^{-1} (0)$
 $= 40^{*} = \cos^{-1} (\cos 40^{*})$
0. Find the value of \overline{A} so that the vectors \overline{a}^{*} and \overline{b} are perpendicular to each other.
 $\overline{a}^{*} = 2\hat{z} - \hat{j} - \hat{k}$
 $\overline{b}^{*} = \lambda \hat{z} + \hat{j} + 5\hat{k}$

- > at at b > at F=0
- > 21-1-5=0

>> >= 6 = 3

=> 21 = 6

(ii)
$$\vec{x} = \vec{e} + \vec{j} + \vec{k}$$

 $\vec{b} = 4\vec{e} - 3\vec{k}$
 $\vec{a} + 4\vec{e} + 5\vec{k}$
 $\vec{a} + 4\vec{e} + 3\vec{k}$
 $\vec{a} + 4\vec{e} + -3\vec{k}$
 $\vec{a} + 5\vec{e} + \vec{a} + 1\vec{b} + \vec{b} + \vec{a} + \vec{$

 $\vec{b} \times \vec{a} = |\vec{b}||\vec{a}| \sin \phi (-\hat{n})$ = $|\vec{a}||\vec{b}| \sin \phi (-\hat{n})$ = $-(|\vec{a}||\vec{b}| \sin \phi)$ = $-(|\vec{a}||\vec{b}| \sin \phi)$ = $-\alpha(|\vec{a}|\times\vec{b})$

 $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$

= cross product is not commutative.

COMMINE DATTUE ENGITCH

ENDITINEERENG MATHEMATTICS

	visuale but opposite direction.
* ax B and B ra have come mag	(Contraction (20) - 20)
* a1b, 0=90'	
axb = la 116 1 21 ngo.	
= [ā'] [b'] n	
* AF a + 5 and a, b are unit v	
$\vec{a} \times \vec{b} = 1 \cdot 1 \cdot \hat{n}$	
= n	
* 24j+k	
	war pandanatal astrono -partsan a
s x] = k	entresting withter information are a meeting withter information are a straid be acar betere or today of a georda with the netice .
jxz = -K	
$\int x \hat{k} = \hat{z}$	- 82 Hau sur man
$\hat{\mathbf{K}} \times \hat{\mathbf{f}} = -\hat{\mathbf{z}}$	
xx2 = j	
$(2 \times k = -)$	
$\hat{z} \times \hat{z} = \hat{z} \hat{z} \sin 0 \hat{n}$	
$1 \times 1 = 0$	
KXK=0	
* $\vec{a} \times \vec{b} = \vec{a} \vec{b} \sin \theta \hat{n}$	
$Sino = \frac{1\vec{a} \times \vec{b}}{ \vec{a} \vec{b} }$	
121151	
<u>L</u>	

frequencies of cross product
(1) Cross product is not commutative.

$$\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$$

(3) If is associative with respect to a scalar.
 $\alpha(\vec{a} \times \vec{b}) = (a\vec{a}) \times \vec{b}$
 $= \vec{a} \times (\alpha \vec{b})$
(3) Vector product is distributive.
 $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
(4) $\vec{b} = b_1 \hat{t} + a_2 \hat{j} + a_3 \hat{k}$
 $\vec{b} = b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}$
 $\vec{a} \times \vec{b} = (a_1 \hat{t} + a_2 \hat{j} + a_3 \hat{k}) \times (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k})$
 $= A t \hat{t} \times (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_2 \hat{j} \times (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k})$
 $= a_4 t \hat{t} \times (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_2 \hat{t} \times (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{k}) + b_3 \hat{k} + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{k}) + b_3 \hat{k} + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{k}) + b_3 \hat{k} + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{k}) + b_3 \hat{k} + a_3 \hat{k} (b_1 \hat{t} + b_2 \hat{k}) + b_3 \hat{k} + a_3 \hat{k} + a_3$

Br. Find a unit vector perpendicular to each of the vectors 22-j+k and 32+4j-k. Also find the sine of angle between the two vectors.

 $seln - \vec{a} = 2\vec{z} - j + \hat{k}$ $\vec{b} = 3\vec{z} + 4\hat{j} - \hat{k}$

A unit a weator perpendicular to a & bt

Now.

ow,	1 ÷ † K	z (23)
arb=	2 -1 1	3(13)
	34-1	8 (52)

$$= \hat{2}(2-4) - \hat{3}(-2-5) + \hat{k}(4+3)$$

$$= -3\hat{2} + 5\hat{3} + 31\hat{k}$$

$$|\vec{k} \times \vec{b}| = \sqrt{(-3)^2 + (5)^2 + (41)^2}$$

$$= \sqrt{14+25+421}$$

$$= \sqrt{14+25+421}$$

$$= \sqrt{14-55}$$

$$\hat{k}$$
So, whit Nector perpendicular to $\vec{k} \wedge \vec{b}$

$$= \frac{\vec{a} \times \vec{b}}{1\vec{a} \times \vec{b}^2|}$$

$$= -\frac{3\hat{2} + 5\hat{3} + 31\hat{k}}{\sqrt{1455}}$$

$$= \frac{-3\hat{2} + 5\hat{3} + 31\hat{k}}{\sqrt{1455}}$$
Sine of the angle between $\vec{k} \wedge \vec{b}$

$$= \frac{1\hat{k} \times \vec{b}}{1(\vec{b})|}$$

$$= \frac{1\hat{k} \times \vec{b}}{1(\vec{b})|} = \frac{1\hat{k} \times \vec{b}}{1(\vec{b})|}$$

- I I EVEL Geometrical meaning of cross product à M a DA = a OB = B sing = BM axb = la | 15 | sinon OB BM = 100 1 stno = lay BMA =151stno laxb1 = la BM = Area of parallelogram with sides a and B Hence, a x b' is a vector whose magnitude is equal to the area of the parallelogram with sides of and b'.

The area of
$$\triangle$$
 And

$$= \frac{1}{2} \left[4\overline{a} \times 7\overline{c} \right]$$
The area of \triangle and

$$= \frac{1}{2} \left[4\overline{a} \times 7\overline{c} \right]$$
The obtain the area of the parallelogram whose sides are vectors $\hat{z} + \hat{z} + \hat{z} + \hat{z}$ and

$$-2\hat{z} - \hat{z} + \hat{x}.$$
Such $= \hat{z} + \hat{z} + \hat{z} + \hat{z}$

$$T = \hat{z} + \hat{z} + \hat{z} + \hat{z}$$
Area of parallelogram with sides $\overline{c} + \overline{b} = |\vec{a} \times \overline{b}|$

$$= \hat{z} + \hat{$$

$$s_{1} = \frac{1}{2} \times 15^{2} = \frac{1}{2} \frac{1}{2} (\frac{1}{2} - \frac{1}{2}) + \frac{1}{2} (\frac{1}{2} + \frac{1}{2}) \\ = -45^{2} + 4k^{2}$$

($\vec{k} \times 5^{2}$] = $\sqrt{(\frac{1}{2} + \frac{1}{2})^{2} + (\frac{1}{4})^{2}}$
 $= \sqrt{22} \text{ sq. unit.}$
8. Calculate the area of Δ Abov by vector methies $A(\frac{1}{2}, \frac{1}{2}, 4)$, $B(\frac{1}{2}, \frac{1}{2}, -2)$
solor - Area of Δ Abov $\frac{1}{2} - \frac{1}{2} (\frac{1}{40} \times \frac{1}{40})$
 $\vec{k}^{2} = (\frac{1}{2} - 1)6\hat{x}^{2} + (\frac{1}{2} - 2)\hat{y} + (\frac{1}{2} - 4)\hat{k}$
 $= \frac{1}{2} \frac{1}{4} + \frac{1}{2}\hat{x}^{2} + (\frac{1}{2} - 2)\hat{y} + (\frac{1}{2} - 4)\hat{k}$
 $\vec{k}^{2} = (\frac{1}{4} - 4)\hat{z}^{2} + (\frac{1}{2} - 2)\hat{y} + (\frac{1}{4} - 4)\hat{k}$
 $= 3\hat{z}^{2} + \hat{y} - 3\hat{k}$
Now, $\vec{A}\vec{v} \times \vec{A}\vec{v}^{2} = \int \hat{e} \hat{j} \hat{k}$
 $\frac{1}{2} \frac{1}{2} - \frac{1}{2}\hat{j} + 5\hat{k}$
Now area of A Abov $\frac{1}{2} - \frac{1}{2} \left[\vec{A}\vec{b} \times \vec{A}\vec{z}\right]$
 $= \frac{1}{2} \sqrt{(2)^{2} + (-12)^{2} + (6)^{2}}$
 $= \frac{1}{2} \sqrt{(2)^{2} + (-12)^{2} + (6)^{2}}$
 $= \frac{4}{2} \sqrt{\sqrt{250}} = \frac{\sqrt{110}}{2}$

0. The sum of we will we there is a unit vector. Then show that negativate at their difference is f3.
when
$$\overline{a}, \overline{b}$$
 is a unit vector $\overline{b}, \overline{a}, \overline{b}$ is a unit vector.
To show that $|\overline{a}-\overline{b}| = 45$.
 $\overline{a}+\overline{b}$ is a unit vector.
To show that $|\overline{a}-\overline{b}| = 45$.
 $\overline{a}+\overline{b}$ is a unit vector.
 $\overline{a}+\overline{b}$ is a negative vector.
 $\overline{a}+\overline{b}$ is a negative vector.
 $\overline{a}+\overline{b}$ is a isocales triangle.
 $\overline{a}-\overline{b}$ is a isocales triangle.
 $\overline{a}-\overline{b}-\overline{b}$ is $\overline{c}-\overline{b}+1+1+\underline{c}=2$
hav, consider Δ Auc.

$$\begin{aligned} &\Rightarrow \Delta ADDC is a right angled Hiargle
s, $|i\overline{c}|^{2} + (Ap)|^{2} = (\overline{c}p)^{2} \\
&\Rightarrow 1 + |\overline{c} - \overline{c}|^{2} = 2^{2} \\
&\Rightarrow |\overline{c}|^{2} - \overline{c}|^{2} = (2)^{2} - (2)^{2} = 3 \\
&\Rightarrow |\overline{c}|^{2} - \overline{c}|^{2} = \sqrt{3} \end{aligned}$
Exercise $\xi_{12}(c)$
0. talculate the area of ΔABC by wider method where $A(3, 2, 4d), e(3, 2d, 4d), e(3, 2d$$$

Limit & continuity

Cartesian product

Function

It is a special type of relation. $f: A \rightarrow B$ (3) $p_{omt} = A$ (3) $(x,y) \in f$ $(x,z) \in f$ $\Rightarrow y = z$

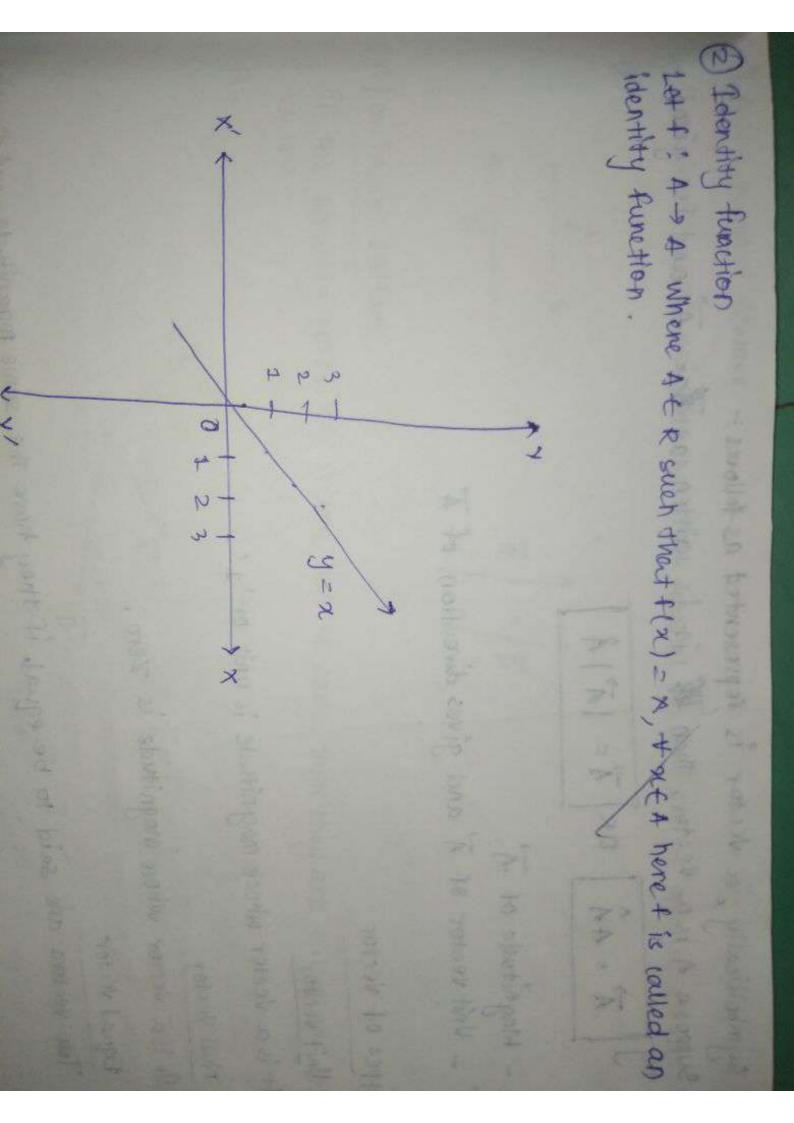
It is not one -many relation. Types of function

1 Constant function

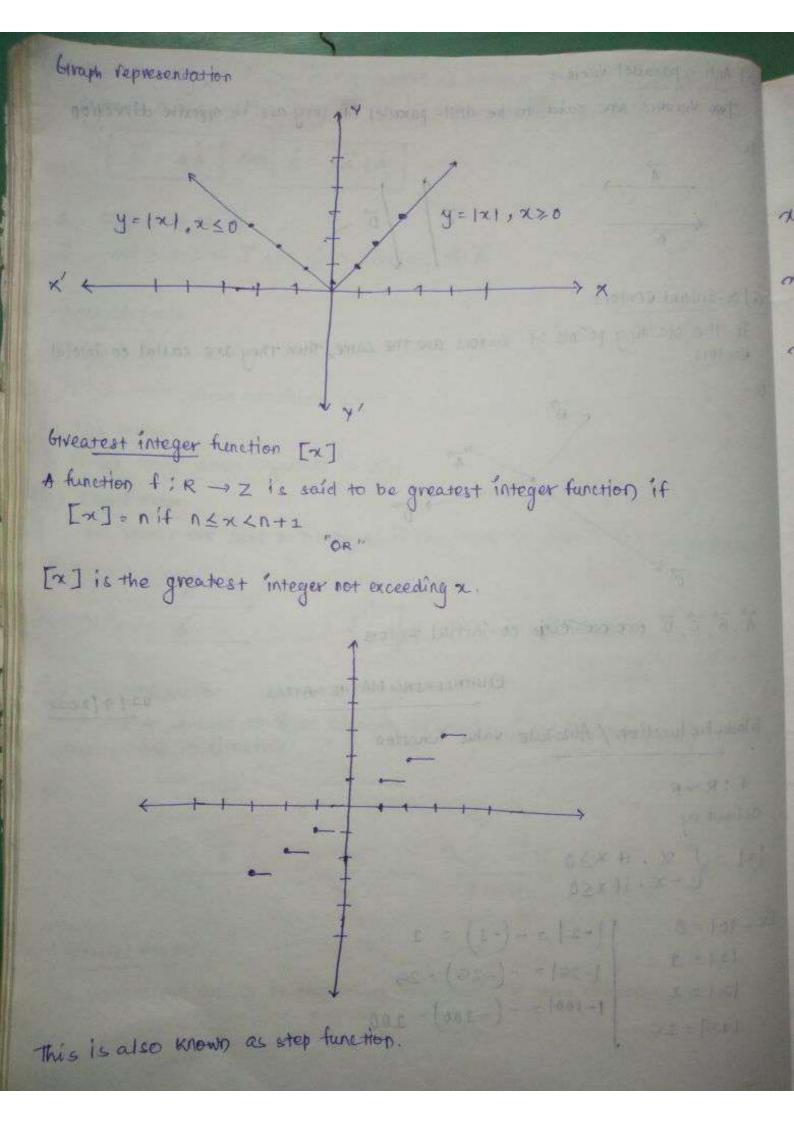
A function $f: A \rightarrow R$ is said to be a constant function if f(x) = K. for K be any real number $\forall x \in A$.

Ex -
$$f(x) = 2$$

 $f(x) = 2$
 $f(x) = 2$
 $f(x) = 3$
 $y = 2$
 $y = 2$
 $y = 2$



Be-101=0 121 2 2 x. Hx20 defined by Modulus function / Absolute value function A-B-B 115 215 12122 12 1 1 [-1] 2 - (-1) 2 1 1-100 = - (-100) = 100 1-25/2 - (-25) 2 25 ENGINEERING MATHE MATTES



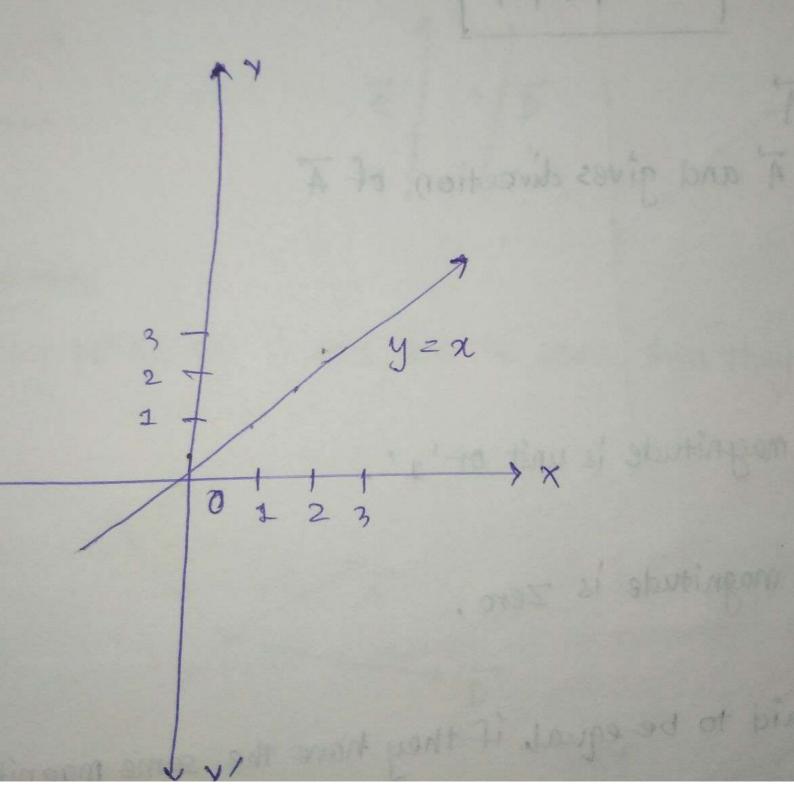
signum function
$$(sgn x)$$

The signum function in R is defined by $sgn x = \int_{|x|}^{x} \int_{1}^{1} f x \neq 0$
 $n = 1, Sgn x = \frac{1}{|1|} = \frac{1}{2} = 1$
 $n = 5, Sgn (x) = \frac{5}{15!} = \frac{5}{5} = 1$
 $n = 100, sgn x = \frac{100}{1100!} = \frac{100}{100} = 1$
Range set of Sgn $x = \xi - 1, 0, 1$
Encomplementation Methanizes
 $d = 100 = 1$
 $d = 100 = 1$

He as

mm

 $\vec{b} \times \vec{a} = |\vec{b}||\vec{a}| \sin \phi(-\hat{n})$ 2 1a 15 151 sint (-n) $= -(1\bar{a}'|1\bar{b}'|3|no\hat{n})$ $= -a(\vec{a} \times \vec{b})$ $a \times b \neq b \times a^2$ = Cross product is not commutative Hop where $A \in R$ such that f(x) = A, $\forall x \in A$ h. Iop.



Be-101=0 121 2 2 x. Hx20 defined by Modulus function / Absolute value function A-B-B 115 215 12122 12 1 1 [-1] 2 - (-1) 2 1 1-100 = - (-100) = 100 1-25/2 - (-25) 2 25 ENGINEERING MATHE MATTES

ENGENEERING MATHEMATICS 2014 22 Absolute value function / Modulus function Trigonometric function $Sin : \mathbb{R} \longrightarrow [-1, 1]$ Cosine : $\mathbb{R} \rightarrow \begin{bmatrix} -1, 2 \end{bmatrix}$ $-\tan : R - \left\{ (2n+1) \frac{\pi}{2} \right\} \rightarrow R$ $cot: \mathbb{R} - \{n_{\overline{j}}\} \to \mathbb{R}$ See: $\mathbb{R} = \left\{ (2n+2) \frac{\pi}{2} \right\} \longrightarrow \mathbb{R} \left(-\varphi_{-1} \right] \cup \left[1, \varphi \right)$ Losee: $\mathbb{R} = \{ \Pi \exists \} \rightarrow \mathbb{R} \quad (-\infty, -1] \cup [1,\infty)$ there are and the same of the same M= Sinx 1 +fell Concept of closeness Limit of a function reighbourhood A no'l' is said to be the limit of a function f(x) as or tends to a. xt (a, b) z i.e $\lim f(a) = 1$ a1226 X - A arts it for E>0 theire exists \$>0 depending on E Such that 0×1x-a1<8 <> 1f(x)-21<8

4/22

er,

Left hand limit (LHL)		
A no. 'Le' is said to LHL of f(z) as x tends to a		
i.e lim f(x) = le if for any E>0, there exists \$>0 depending		
on E such that a - & Loi La => f(x) - la LE		
Right hand limit (RHL)		
A no. 'l2' is said to RHL of f(x) as x tends to 4 a i.e. lim f(x) - le il le		
i.e $\lim_{\alpha \to a^+} f(\alpha) = l_2$ if for any $\varepsilon > 0$ there exists $\delta > 0$ depending		
on E such that a car Lat $8 \Rightarrow 1 + (a) - l_2 X E$		
Existence of a limit		
A limit lim + (2) exists if both LHL & RHL exists and are		
and the second se		
i.e $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = 1$		
Proceedure to evaluate a LHL		
(a) Write $\lim_{x \to a^{-1}} f(x)$		
It $x = a - h$ and $h \rightarrow 0$		
(
(a) Then evaluate using standard formula		
Procedure to evaluate RHL		
(1) Write lim +(x)		
NAAT		
That $n = a + h$ and $h \to 0$		
(lim flath)		
h+o		
(4) Then evaluate the limit using standard formula.		

R

4

2

50

- 50

Example

Tramine the existence of lim (22+1)

Soln - LHL

>0 depending

a. O depending

and are

 $= \lim_{h \to 0} \left\{ 2(1-h) + 1 \right\}$ = $\lim_{h \to 0} \left(2 - 2h + 1 \right)$ = $\frac{342 \times 0 = 24}{3 - 2 \times 0} = 3$

lim 2a+1

 $\frac{RHL}{\lim_{x \to 1^+} 2x+1}$

⇒ lim {2 (1+h)+1 }

 $\Rightarrow \lim_{h \to 0} \left\{ \left(2 + 2h + 1\right) \right\}$

> 3+2×0=3

so, $\lim_{x \to 1} (2x+1)$ exists.

Trample

Examine the existence of lim [x] Solk -L++L lim [x] x - n - [x] = lim [n - h] h - n 0 [n - h]

= 0 - 1

RHL

lim [2] $= \lim_{h \to 0} [n+h]$ # D LHL + RHL so, lim [a] does not exists. Ex - lim [21] Soln-LHL Lem tal = lim [o-h] 2 - 1 RHL Lim [x] = Lim [oth] = 0 LHL & RHL

so, lim [x] does not exists

(it dets) } mil (A

K" mile to sensitize ant some

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$= \lim_{h \to 0} \frac{h}{k}$$

= 1

P LHL & RHL

so, lim syn z doesnot exist.

Q. Examine the existence of limit at x = 0

$$f(x) = \begin{cases} \frac{x - |x|}{x}, & \neq 0 \\ 2, & \neq 0 \end{cases}$$

21/4/22

23.

soln-

h->0

2

3

4K

and the and a set

2

$$= \lim_{h \to 0} (0-h) - 10-h) \qquad \Rightarrow \lim_{h \to 0} (0+h) - 10+h \\ \xrightarrow{h \to 0} 0-h \qquad \Rightarrow \lim_{h \to 0} \frac{h-h}{h} \\ \Rightarrow \lim_{h \to 0} -h-h \qquad \Rightarrow \lim_{h \to 0} \frac{h-h}{h} \\ \Rightarrow \lim_{h \to 0} \frac{h-h}{-h} \qquad \Rightarrow \lim_{h \to 0} \frac{h-h}{h} \\ \Rightarrow \lim_{h \to 0} \frac{h-h}{h}$$

0

LHL # RHL

Hence, lim f(x) aloes not exist.

laws of limit

Let f and g be two functions such that
$$\lim_{x \to a} f(x) = L$$
 and $\lim_{x \to a} g(x) = m$.

1)
$$\lim_{m \to a} (f(x) + g(x) = \lim_{m \to a} f(x) + \lim_{m \to a} g(x)$$

= L+m

Limit of sum of two functions is equal to sum of their limits.

(ii)
$$\lim_{x \to a} \left\{ f(x) - g(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \right\}$$

The limit of difference of two functions is equal to the difference of their limits.

(iii)
$$\lim_{x \to a} \begin{cases} kf(x) = k \lim_{x \to a} f(x) \\ x \neq a \end{cases}$$

(iv)
$$\lim_{x \to a} \left\{ f(x) - g(x) \right\} = \lim_{x \to a} f(x)$$
. $\lim_{x \to a} g(x)$

= lm

(v)
$$\lim_{m \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{m \to a} f(x)}{\frac{n \to a}{2}} = \frac{1}{m}, m \neq 0$$

$$\lim_{m \to a} g(x) = \frac{1}{m}$$

 $\frac{\mathrm{Ex}}{\mathrm{n+1}} \left(\sqrt{\mathrm{n}} + \mathrm{n} + \frac{\mathrm{1}}{\mathrm{n}} \right)$

 $2 \lim_{x \to 1} \sqrt{\sqrt{x}} + \lim_{x \to 1} \frac{1}{\sqrt{x}}$

Example

tim

= VI + 1 + 1 VI = 1+1+1 = 3 Ans Example lim (17152) = 17 lim Ta 7771 = 17.11 = 17.1 17 difference Example lim (n+1/2) n+1 (2x+1) $=\lim_{x\to a} (x+\sqrt{x})$ lim at lim th at the N-71 lim (22+1) lim 22+ lim 1 271 23+1 1+11 2.2+1 1+11 2+1 2 Methods of evaluation of limits We shall deal with the problems on 2) Algebraic Limit 2) Trigonometric limit 3) Exponential and logarithmic limits

and

imits.

ENGUNEERING MATHEMATICS

Methods of evaluation of Algebric limit

- (2) Direct substitution method
- (2) factorisation method
- 6) Rationalisation method
- + (4) Using some standard vesults
- (5) Evaluation of limits when $x \to \infty$ (limits at infinity)

Divect substitution method

In this case we shall directly substitute the value of x to evaluate the limit.

Example

$$\lim_{x \to 1} (1 + 2x - 2x^2 + 4x^3 - 5x^4)$$

Soln -

- = $1400 \ 1+2 \lim_{x \to 1} x 2\lim_{x \to 1} x^2 + 4\lim_{x \to 1} x^3 5\lim_{x \to 1} x^4$
- $= 1 + 2 \cdot 1 2 \cdot 1^2 + 4 \cdot 1^3 5 \cdot 1^4$

= 1+2-2+4-5

Example

 $\lim_{\chi \neq 1} (2\chi^{2} - 1)$ Soln = $= 2 \cdot 1^{2} - 1$

= 2-1=1

In determinate form 010 010

23/4/22

Example N-2 Evaluate lim 2172 24-16 Soln = o form Now, using factorisation method | a4 b4 = (a-b) (a+b) (a2+b2) Rom 2-2 2-2 24-16 thed the magnetude of cress medical of the manufacture where many had 22 made manage side one star A bas short of me => Lim $\chi \to 2$ $(\chi = 2)(\chi + 2)(\chi^2 + 2^2)$ Lim $(\chi + 2) (\chi^2 + 2^2)$ 777 $(2+2)(2^2+4)$ 1 Im $a \rightarrow 2$ 2 (4)(8) 2) Lim 2772 32

Inestonisation Method

Line
$$\frac{2^2-q}{q-2}$$
 (Using diverse substitution worked)
= $\frac{\sigma}{O}$ (Indeterminate form)
Now, Using fractorisation method
= $\frac{1}{2}$ ($\frac{q+3}{2}$) ($\frac{q-3}{2-3}$
= $\frac{1}{2}$ ($\frac{q+3}{2-3}$)
= $\frac{1}{2}$
Apply limit
= $\frac{3}{2+3}$
= $\frac{\sigma}{O}$
Now using factorisation method
= $\frac{1}{2}$ ($\frac{q^3-1^3}{2-1}$) (a^2+a+1)
= $\frac{1}{2}$
 $\frac{1}{2}$ ($\frac{q-1}{2-1}$) (a^2+a+1)
= $\frac{1}{2}$
 $\frac{1}{2}$ ($\frac{q-1}{2-1}$) (a^2+a+1)
= $\frac{1}{2}$ ($\frac{q^2+q+1}{2-1}$)

Apply limit

- 1²+ 1 + 1

3

ENGINEERING MATHEMATICS

Q. Examine the existence of limit lim sgnx

$$soln - f(x) = sgn(x) \begin{cases} \frac{\pi}{pq}, & x \neq 0 \end{cases}$$

LHL

 $= \lim_{n \to \infty} \frac{1}{2}$

$$= \lim_{n \to 0} \frac{10 - h}{-h}$$

K

h = 0 = -1

i matalis arenimas os arus na vota

 $\hat{x} = A + \hat{i} \cdot A + \hat{k}$

22/4/22

-0 - ---

ENGENEERENG MATHEMATICS

25/4/22

Putting
$$(3+\pi)^3 - 27$$

 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$
 $7 - 27$

Putting $x \rightarrow 0$ $(3t0)^{7} - 27$

= $\frac{27-27}{0} = \frac{0}{0}$ (Indeterminate form)

Now, using tactorisation method $\lim_{x \to 0} \frac{(3+2)^3 - 3^3}{x}$

(3+x-3) $(3+x)^{2}+(3+x)^{3}+3^{2}$ lim 2-70

 $\Rightarrow \lim_{x \to 0} \mathscr{A} \left\{ (3+x)^2 + 3(3+x) + 9 \right\}$

Apply limit $(3+0)^2+3(3+0)+9$ = 9+9+9= 27 |Ans

0. $\lim_{x \to 3} \frac{x^{2i} + 2x - 15}{\pi^2 - x - 6}$

⇒ lim 71-3

⇒ lim n+3

 $\frac{\pi^{2}+2\alpha-3\pi-6}{\pi(\pi+5)-3(\pi+5)}$

x2+5x-3x-15

 $\frac{1}{2} \lim_{x \to 3} \frac{(2(+5)(x-3)}{(2+2)(x-3)}$

Apply limit

 $limit = \frac{3+5}{3+2} = \frac{8}{5}$ [Ans

Evaluation of limit by Rationalisation method By multiplying and dividing with conjugate

Ex. $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{x}{\sqrt{x+1}-1}$ = $\lim_{\substack{x \to 0 \\ x \to 0}} \frac{x}{\sqrt{x+1}+1} (\sqrt{x+1}+1) (\sqrt{x+1}+1) (\sqrt{x+1}+1)$ $\lim_{\substack{x \to 0 \\ x \to 0}} x (\sqrt{x+1}+1)$

 $2 \rightarrow 0$ $(\sqrt{2+1} + 1)^2 - 1^2$

	((v x + 1)		
72.30	7+2-2		
- Lîm	× (12+2+2)		
× >0	ac		
Apply the Li	mi t		
. 10+1 + 1			
= 2 + 2 = 2 Ans			
= +++	= 2 <u>Ons</u>	nothing in manipal	
Q. lim	カーレズ		
a-25			
		Para Maria	
→ 12m 21→25	(5-校)(5+校)		
	(25-2) (5+10)	()	
3 lim		a the the second second	
⇒ lím 71→25	52- (1/2)2		
	(25-2) (5+12)) after an wat the period	
3 lim	25-51	a march	
7725	(25-x) (5+Vx)		
	(cry(stin)		
> lim			
2+25	5+Va	parties a factoria	
Apply limit			
1			
5+15			
21.15	5 5+5		
	- 1_		
	10		

ENGENEERING MATHEMATERS 27/4/22

elles a sum at muser of a second of the

Tai + Prilag

[#3] · [3] · [3] · [2#]

$$\frac{11mot at infinity}{n-1} \begin{cases} \lim_{x \to \infty} f(x) \\ x \to \infty \end{cases}$$

Divide numerator and denominator by x2

ろスキら

$$\frac{\lim_{x \to 0} \frac{3x^2}{x^2} + \frac{4x}{x^2} - \frac{1}{x^2}}{\frac{2x^2}{x^2} - \frac{3x}{x^2} + \frac{5}{x^2}}$$

 $\frac{3+\frac{4}{3}-\frac{1}{3^2}}{2\sqrt{2}} + \frac{5}{3} + \frac{5}{3^2}$

Now apply limit

3+ 4/ - 10

26-364 20

 $=\frac{3}{2}$ [Ans

 $\frac{2x+1}{2x-2}$ Divide numerator and denominator by 22

$$\Rightarrow \lim_{x \to \infty} \frac{\frac{2x}{x} + \frac{1}{x}}{\frac{3x}{x} - \frac{2}{x}}$$

 $= \lim_{X \to A} \frac{2 + \frac{1}{\pi}}{3 - \frac{2}{\pi}}$

Apply limit $\Rightarrow \lim_{x \to \infty} \frac{2 + \frac{1}{2}}{3 - \frac{2}{2}}$

 $=\frac{2}{3}$ Ans

Evaluation of limits using some standard limits

Q. Evaluate $fx - \lim_{\substack{M \to \infty \\ m \to \infty}} \frac{1+2+3+\dots+n}{n^2}$ $\left| 2+2+3+\dots+n \\ = \frac{n(n+3)}{2} \right|$ $\Rightarrow \lim_{\substack{m \\ m \to \infty}} \frac{n(n+3)}{n^2}$ $\left| \frac{1+n(n+3)}{2} \right|$ $\Rightarrow \lim_{\substack{m \\ m \to \infty}} \frac{n^2+n}{2n^2}$ $\left(\frac{\infty}{\infty} \right)$ $\Rightarrow \frac{1}{2} \lim_{\substack{m \\ n \to \infty}} \frac{p^2}{m^2} + \frac{n^2}{n^2}$ $\Rightarrow \frac{1}{2} \lim_{\substack{m \\ n \to \infty}} \frac{p^2}{m^2} + \frac{n^2}{n^2}$ $\Rightarrow \frac{1}{2} \lim_{\substack{m \\ n \to \infty}} \frac{1+2+n}{m^2} = \frac{1}{2} \left(1+\frac{n}{2} \right) = \frac{1}{2}$

$$\begin{aligned} tx = \lim_{n \to \infty} \frac{1^{2} \pm 2^{2} \pm 3^{2} \pm \dots \pm n^{2}}{n^{3}} \qquad \int_{-n}^{n} \frac{n(n+1)(2n+1)}{n} \\ \Rightarrow \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{n^{3}} \\ \Rightarrow \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{(n^{3}2} \\ \Rightarrow \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{(n^{3}2} \\ \Rightarrow \frac{1}{6}(n \to \infty) \frac{n(n+1)(2n+1)}{n^{2}} \\ \Rightarrow \frac{1}{6}(1 \pm \frac{1}{4}\frac{1}{6})(2 \pm \frac{1}{4}\frac{1}{6}) \\ apply \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{n^{2}} \\ \Rightarrow \frac{1}{6}(1 \pm \frac{1}{4}\frac{1}{6}\frac{1}{6})(2 \pm \frac{1}{4}\frac{1}{6}) \\ apply \lim_{n \to \infty} \frac{1^{3} \pm 2^{3} \pm 3^{3} \pm \dots \pm n^{3}}{n^{9}} \qquad \int_{-n}^{n(n+1)} \frac{1^{3} \pm 2^{3} \pm 3^{3} \pm \dots \pm n^{3}}{n^{2}} \\ \Rightarrow \lim_{n \to \infty} \frac{1^{3} \pm 2^{3} \pm 3^{3} \pm \dots \pm n^{3}}{n^{9}} \qquad \int_{-n}^{n(n+1)} \frac{1^{3} \pm 2^{3} \pm 3^{3} \pm \dots \pm n^{3}}{n^{2}} \\ \Rightarrow \lim_{n \to \infty} \frac{n(n+1)^{7}}{n^{9}}^{2} \\ \Rightarrow \lim_{n \to \infty} \frac{n(n+1)^{7}}{n^{9}} \\ \Rightarrow \lim_{n \to \infty}$$

4 61 - 10

$$=\frac{1}{4} \lim_{\substack{n \to \infty}} \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)$$

$$=\frac{1}{4} \left(1 + \frac{2}{p} + \frac{4}{p^2}\right)$$

$$=\frac{1}{4} \left(\frac{1 + \frac{2}{p} + \frac{4}{p^2}}{p}\right)$$

$$=\frac{1}{4} \left[\frac{4ns}{p^2 + \frac{4}{p^2}}\right]$$

$$=\frac{1}{4} \left[\frac{4ns}{p^2 + \frac{4}{p^2}}\right]$$

$$=\frac{1}{4} \left[\frac{4ns}{p^2 + \frac{4}{p^2}}\right]$$

$$=\frac{1}{4} \left[\frac{4ns}{p^2 + \frac{4}{p^2}}\right]$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a > 0$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a > 0$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a > 0$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a > 0$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a > 0$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a > 0$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{2^{n} - a^{n}}{2^{n} - a} = na^{n-2}, a + \dots + a^{n-2}$$

$$=\frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^{n} - a)}{2^{n} - a} = \frac{1}{2} \lim_{\substack{n \to \infty}} \frac{(2^$$

ENGINFERTING MATHEMATRES
Q
$$\lim_{x \to a} \frac{a^{2t}-1}{x} = \log_{e}^{2}$$

Let $a_{2} = y$
 $\Rightarrow a^{x} = 1 + y$
 $\Rightarrow \log_{e} a^{x} = \log_{e}(1 + y)$
 $\Rightarrow x \log_{e} = \log_{e}(1 + y)$
 $\Rightarrow x \log_{e} = \log_{e}(1 + y)$

$$\begin{aligned} \begin{array}{c} y_{hen} & x + 0, y \neq 0 \\ \frac{1}{y_{ga}} & \frac{y}{h_{ga}} & \frac{y}{h_{ga}} \\ \frac{1}{y_{ga}} & \frac{y}{h_{ga}} & \frac{y}{h_{ga}} \\ \frac{y}{y_{ga}} & \frac{1}{h_{ga}} & \frac{1}{h_{ga}} \\ \frac{y}{y_{ga}} & \frac{1}{h_{ga}} & \frac{1}{h_{ga}} \\ \frac{y}{y_{ga}} & \frac{1}{h_{ga}} & \frac{1}{y_{ga}} \\ \frac{y}{y_{ga}} & \frac{1}{h_{ga}} \\ \frac{y}{y_{ga}} & \frac{y}{y_{ga}} \\ \frac{y}{y_{ga}} & \frac{y}{y_{ga}} \\ \frac{y}{y_{ga}} & \frac{y}{y_{ga}} \\ \frac{y}{y_{ga}} & \frac{y}{h_{ga}} \\ \frac{y}{y_{ga}} \\ \frac{y}{h_{ga}} & \frac{y}{h_{ga}} \\ \frac{y}{h_{ga}} \\ \frac{y}{h_{ga}} & \frac{y}{h_{ga}} \\ \frac{y}{y_{ga}} \\ \frac{y}{h_{ga}} \\ \frac{$$

 $\Rightarrow \lim_{\alpha \to 0} 2 + \frac{\alpha}{2!} + \frac{\alpha^2}{3!} + \cdots$ Let, \$ 0 > 1+ 2 + 3 + when x > 1 1RHS ⇒ Lim y+0 (4) lim (2+x) = e = e] Proof LHS Lim (2+x) = x+0 C Lim Proof $= \lim_{x \to 0} 1 + \frac{1}{x} \cdot x + \frac{1}{x} \left(\frac{1}{x} - 1\right) \cdot x^{2} + \frac{1}{x} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left(\frac{1}{x} - 2\right) \cdot x^{3} + \frac{1}{2!} \left(\frac{1}{x} - 1\right) \left$ los Let, le $\neq \lim_{x \to 0} 1 + 1 + \frac{1 - x}{2!} + \frac{(1 - x)(1 - 2x)}{3!} + \cdots$ 7 \$ Apply limit \Rightarrow 1+1+ $\frac{1}{21}$ + $\frac{1}{31}$ + $\frac{1}{41}$ +.... 4 when $3 1 + \frac{1}{2!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$ Ly y > e /RHS $(2+\frac{1}{x})^{n} = e$ 2 Proof LHS $\lim_{x \to \infty} \left(1 + \frac{1}{2}\right)^{\alpha}$

When $x = \infty$, $y \rightarrow \frac{1}{\infty} = 0$

⇒ lim (1+y) = y =0 (1+y) =

let, = - y

 $\Rightarrow \chi = \frac{1}{4}$

= e)RHS

x3+

() lim <u>log(2+2)</u> = 1 <u>Proof</u>

IXIA A

- $\frac{1+15}{100}$ $\frac{\log(2+2)}{2(2+2)}$
- Let, log (1+x) = y $\Rightarrow e^{\log (1+x)} = e^{y}$ $\Rightarrow 1+x = e^{y}$
 - > x= e^y-1

when a -> 0, y -> log 2 = 0

- $\Rightarrow \lim_{y \to 0} \frac{y}{e^y 1}$

> 1 RHS

he	ENGINEER	ING MATHEMATICS 23/3/22
	Evaluate	1 - 1 State - Company and the
	Q. $\lim_{x \to 0} \frac{e^{3x} - e^{-x}}{x}$	(= _) will - (= -? m) - mat
	soln - $\lim_{x \to 0} e^{x}(e^{2x}-1)$	$\left \begin{array}{c} \lim_{x \to 0} \frac{e^{x}-1}{x} = 1 \end{array}\right $
	$= \lim_{x \to 0} e^{x} \lim_{x \to 0} \frac{e^{2x} - 1}{x}$	Arte Line
	$= \lim_{\alpha \to 0} e^{\alpha} \lim_{\alpha \to 0} 2 \frac{(e^{2\pi} - 1)}{2\pi}$	Q. Low Log (201-6)
	= $2 \lim_{x \to 0} e^{x} \lim_{x \to 0} \frac{e^{2\pi} - 1}{2\pi}$ Apply limit	
	Apply linit	will 11
	$= 2 \cdot l^{\circ} \cdot 1$ = 2 \cdot 1 \cdot 1	species of a single and a
etrix al to	2 2. Jons	
word .	Q. $\lim_{x \to 0} \frac{3^{x}-2^{x}}{-4^{x}-3^{x}}$	(a-(erurs) pat and
in the second	$\frac{\text{soln} - \lim_{\infty} 3^{2^{2}} - 1 - 2^{2} + 1}{2^{2}}$	$\ \lim_{x\to 0} \frac{a^{x-1}}{x} = \log a$
	$4^{-1-3^{+}+1}$	(were styped mich -
	= $\lim_{x \to 0} \frac{3x - 1 - (2x - 1)}{x}$	(wetalled a mid
	$4^{2}-1-(3^{2}-1)$	36

$$= \lim_{n \to 0} \left(\frac{3^{n} \cdot 4}{n} \right) - \lim_{n \to 0} \left(\frac{2^{n} \cdot -1}{n} \right)$$

$$= \lim_{n \to 0} \left(\frac{1^{n} \cdot -1}{n} \right) - \lim_{n \to 0} \left(\frac{3^{n} \cdot -1}{n} \right)$$

$$= \frac{\ln 3}{\ln 4} - \frac{\ln 3}{\ln 3}$$

$$= \frac{\ln 3}{\ln 4} - \frac{\ln 3}{\ln 3}$$

$$= \frac{\ln 3}{\ln 4} - \frac{\ln 3}{\ln 3}$$

$$= \frac{\ln 3}{2} - \frac{1}{2}$$

$$= \frac{1}{2}$$

· G -

free

J

Her

Her

\$

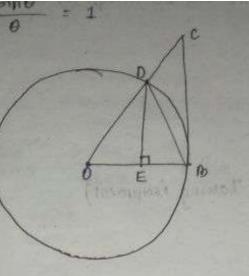
⇒ 1/2

\$

In

S

9



Proof

Mar polyter

0-0

Take a unit circle Vadius v = 1BC is the tangent

Join BD, Draw $DE \perp 0B$ Here, $\angle 100D = 0 = \angle 100C$ Here,

Area of 1000 \$\$ Area of are 000 < Area of 1000c

 $\Rightarrow \frac{1}{2} \times 00 \times DE < \frac{1}{2} \times 20 < \frac{1}{2} \times 00 \times 00$

⇒ DEKOKBC ____ () and sells not (sig > (sit > (s))
In DOED,

3

onat and a

- 3 - 9

a mar a const

 $Sin \Theta = \frac{OE}{OD}$

* <u>DE</u> 1

A DE = Sino - (

 $-\tan\theta = \frac{BL}{OB} = \frac{BC}{1}$

\$ 30 = tano

Substituting the values of DE and BC in ogn ()	- 1 1
Sin o K & K dano	Co
$\frac{3}{5 \ln \theta} < \frac{\theta}{5 \ln \theta} < \frac{3 \ln \theta}{5 \ln \theta}$	= 4
$\Rightarrow 1 < \frac{0}{5100} < \frac{1}{coso}$	Ex - find d
$\Rightarrow 1 > \frac{\sin \theta}{\Theta} > \cos \theta$ (Taking fediprocal)	son - lin 200
Now,	
$\lim_{\Theta \to 0} 1 > \lim_{\Theta \to 0} \frac{\sin \theta}{\Theta} > \lim_{\Theta \to 0} \cos \theta$	= lim X+0
$\Rightarrow 1 > \lim_{\phi \to 0} \frac{\sin \phi}{\phi} > 1$	$= \frac{2}{3} \lim_{n \to \infty} \frac{1}{n}$
By sandwich Theorem	3 2
$\lim_{\phi \to 0} \frac{\sin \phi}{\phi} = 1 \qquad \boxed{Preved}$	i a
Sand which theorem	= 2 1
It lim $f(x) = \lim_{x \to a} g(x) = l$ and a function $f(p)$ is such that	3 1
$f(x) \leq \phi(x) \leq g(x)$ for all x in a deleted perphase band or	Q. Lim a→J
then $\lim_{x \to a} \phi(x) = l$	Let JI-X
No. Addition	when to a
	x +
LHS and stores	$= \lim_{n \to 0} s$
$\lim_{\Theta \to 0} \frac{\tan \theta}{\theta}$	
= lim sine and sine	= lim s
$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \lim_{\theta \to 0} \frac{1}{\cos \theta}$	= = 1

- 1 · Caso = 1 12/5/22 ENGINEERING MATHEMATICS Ex- find lim Sin 2x x+0 Sin 2x $\lim_{x \to 0} \frac{\sin x}{x} = 1$ SIN3X soln - lin Sin2x x+0 Gin 3x lim 2 sin 2x N-O 22 Sin 3x 3 3-2 $=\frac{2}{3}$ lim $x \to 0$ Sin2x 2× tim sin3x 230 Bax $=\frac{2}{3}\cdot\frac{1}{1}=\frac{2}{3}$ [Ans. Q. lim Sinx A > J - X Let J-x=u where $\Rightarrow x = \pi - u$ ス→ゴ, ル→ ヨーカ=の - lim sin (J-u) 91.70 u

 $= \lim_{n \to 0} \frac{\sin u}{u}$ $= 1 \quad 1 \quad \text{Ans}$

Continuity

* Continous fuetion A function f' is said to be continents at a point at of if i) f(x) has definite value f(a) at x = aii) him f(a) excists 7. 30 m) lim f(a) = f(a)270 (i.e limiting value is equal to functional value at that point) \rightarrow If one or more of the above conditions fail, the function 'f' is said to be discontinous at x = a. Ex - Examine the continuity of the function $f(x) = \left(\frac{\pi}{|x|}, x \neq 0\right)$ Qt x = 0 soin $f(\alpha) = \left\{ \begin{array}{c} \frac{\alpha}{1\chi_{1}} & \alpha \neq 0 \\ 0 & \gamma = 0 \end{array} \right.$ i) f (0) = 0 Now, $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\pi}{12}$

LHL

$$\lim_{\substack{n \to 0^{-1} \\ n \to 0^{-1} \\ n \to 0^{-1} \\ \lim_{\substack{n \to 0^{-1} \\ n \to 0^{-1} \\ n \to 0^{-1} \\ n \to 0^{-1} \\ \lim_{\substack{n \to 0^{-1} \\ n \to 0^{-1} \\ n$$

RHL

- -1

 $\lim_{n\to 0^+} \frac{n}{1 \times 1}$

A DIE A

4 W + FS COLO

When C . do

- $= \lim_{h \to 0} \frac{h}{h}$

1 .

LHL ZRHL

 $\lim_{x\to 0} f(x) \text{ does not exist},$

The function is discontinous.

ENGINEERING MATHEMATECS

Q. Test for continuity

$$f(\alpha) = \int \frac{S \ln 2\alpha}{\alpha}, \ \alpha \neq 0$$

$$1, \ \alpha = 0$$

at x = 0

- soln Here f(0) = 1
 - Now, $\lim_{x \to 0} f(x)$
 - = lim <u>sinzx</u> X-30 X
 - = lim 2 sin2a 2-90 2x
 - = 2 lân sin2x X-20 2x
 - = 2.1
 - = 2

the since, $\lim_{x \to 0} f(x) \neq f(0)$ $x \to 0$ So, f(x) is discontinues at x = 0

Q. Tast for continuity		"n aa
$f(x) = \int \frac{\sin 2x}{\pi}, \ x \neq 0$		- Um
		72.70
at x = 0		= Lêm
soln - $(0) = 2$		X-9a
		Applying
Now, $\lim_{x \to 0} f(x)$		= a +
- Lêm sinza		= 2a
7.70 X	and the second sec	
= Lim 2 staza	and the state of the	since, lin n-
2-20 2-2		The fc
- 7 Non Sin271		A 51-
$= 2 \lim_{\alpha \to 0} \frac{8 \ln 2\alpha}{2\alpha}$		Q. Test
		-f(x)
> 2·1		
= 2		
		Soln -
since, $\lim_{n\to 0} f(n) = f(0)$		2.30
so, $f(x)$ is a continuous at $x=0$	and the second second	Now)
Q. Test for continuity		
		E.
$f(x) = \int \frac{\pi - \alpha}{\pi - \alpha}, x \neq \alpha$		
$f(x) = \begin{cases} \frac{x^2 - a^2}{x - a}, & x \neq a \\ a, & n = a \end{cases}$		\$
		When
soln - Here f(a) = a.		

 $\lim_{x \to a} \#(x)$

$$\begin{aligned} \lim_{\alpha \to \alpha} & \frac{\alpha^2 - \alpha^2}{\alpha - \alpha} \\ = \lim_{\alpha \to \alpha} & \frac{(\alpha - \alpha)(\alpha + \alpha)}{(\alpha - \alpha)} \\ = \lim_{\alpha \to \alpha} & (\alpha + \alpha) \\ + \frac{\alpha}{\alpha + \alpha} \\ = \alpha + \alpha \\ = 2\alpha \end{aligned}$$
Since, $\lim_{\alpha \to \alpha} f(\alpha) \neq f(\alpha)$
 $\alpha + \alpha$
The f(x) is discontinous at $\alpha = \alpha$
0. Test for continuity
 $f(\alpha) = \begin{pmatrix} (\alpha + 2\alpha)\frac{\pi}{\alpha}, \beta + \alpha \neq 0 \\ e^2, \beta + \alpha = 0 \\ \alpha + \alpha = 0 \end{aligned}$
Soln - flore, $f(\alpha) = e^2$
Now, $\lim_{\alpha \to \alpha} f(\alpha)$

71-70

 $= \lim_{x \to 0} (1+2x) \frac{1}{2}$

7 Let 2a = U

$$\Rightarrow \pi = \frac{u}{2}$$

when $\pi \rightarrow 0$

So,
$$\lim_{u \to 0} (1+u) \frac{4}{2}$$

$$= \lim_{u \to 0} (1+u) \frac{4}{u}$$

$$= \lim_{u \to 0} ((1+u) \frac{4}{u})^{2}$$

$$= \left(\lim_{u \to 0} (1+u) \frac{4}{u}\right)^{2}$$

$$= \left(\lim_{u \to 0} (1+u) \frac{4}{u}\right)^{2}$$

$$= e^{2}$$
Since $\lim_{x \to 0} f(x) = f(x)$

$$f \text{ is continous at } x = 0$$

$$0. \text{ ff}$$

$$f(x) = \int_{x \to 0} f(x+u) \text{ if } x < 1$$

$$1 \text{ continous at } x = 1 \text{ , if } x = 1$$

$$2ax - b \text{ , if } x > 1$$

$$(u \text{ continous at } x = 1 \text{ , theo find a and } b$$

$$\text{solor- Given that}$$

$$f(x) = x = f(x)$$

$$x = f(x) = x = f(x)$$

$$\text{Nows, } \lim_{x \to 1} f(x) = x = f(x)$$

$$\frac{1}{x = 1}$$

$$\lim_{x \to 1^{-}} f(x)$$

1

Lim ax2+b 771

 $a(1-h)^2 + b$ - len h-0 $= a(1-0)^2 + b$ = atb RHL lim f(a) # 2-721 = $\lim_{x \to 1^+} 2ax - b$ = lim 2a (2+h)-b マラコキ 2a(2+0)+b 2 2a-b N Stree LHL=RHL=f(1)=1the spiriture approximation > atb = 1 --- (1) 2a-b=1 ---- (2) atb = 1 ⇒ a = 1-b substituting in equation (2) 2a - b = 1⇒ 2 (1-b) - b = 1 2b - 2b - b = 1=> - 35 - 1 - 2 = -1 b = 1 = 1 Ans

ENGINE ERING MATHEMATICS

The state of the later of the state

23/6/22

a share the second and

Differentation

Let δx and δy be small increment in x and y respectively. i.e $y + \delta y = f(x + \delta x)$ $\Rightarrow \delta y = f(x + \delta x) - y$ $= f(x + \delta x) - f(x)$.

Average change in y $\frac{\delta y}{\delta x} = -f(x + \delta x) - f(x)$

The instantenous rate of change of y at the value of x is given by

10m 68x-20	- 84 =	lim	f(x+8x)	1 a martin	0	
602-70	8 x	82-70	to bri		۲	

Notation of derivatives

$$f', \frac{dxy}{dx}, Dy, Df$$

-> Derivative of y with respect to x.

A The process of finding the dovivative of a function is known as differentiation.

* Let $c \in (a, b)$ and f be a function. $\frac{dy}{dx} = f'(c)$

has the limit exists when has of the limit is called the higher hand derivative of t at 'c' and is denoted by t'(cr).
• Similarly if the limit exists when has of the limit is called the test hand derivative of t at 'c' and is denoted by t'(cr).
• f'(cr) = lim
$$f((-h) - f(c) - h > 0$$

 $f'(cr) = lim f((-h) - f(c) - h > 0$
 $f'(cr) = h'(cr)$
Then we say the function is differenties at 'c'.
Daivative of some standard functions
 $f'(c) = nx^{n-x}$
 $g = x^{n}$
Let δx and δy be small increment in x and y respectively.
 $g + \delta y = (x + \delta x)^{n} - x^{n}$
 $= \frac{\delta y}{\delta x \to 0} - \frac{\delta y}{\delta x}$
 $= \lim_{\delta x \to 0} \frac{(x + \delta x)^{n} - x^{n}}{\delta x}$
 $\int \lim_{\delta x \to 0} \frac{7n - an}{\delta x}$

ø

$$= \lim_{bx \to 0} \frac{(a+\delta x)^{b} - x^{b}}{a+bx-x}$$

$$= \lim_{bx \to 0} \frac{x+\delta x \Rightarrow a}{2 \to x}$$

$$= \lim_{a \to \infty} \frac{x^{b} - x^{b}}{2 - x}$$

$$= \frac{1}{dx} (x^{b}) = 0x^{b-2} \qquad \text{fraved}$$

$$= \frac{d}{dx} (x^{b}) = 2x^{2-2}$$

$$= 2x$$

$$\frac{d}{dx} (x^{b}) = 3x^{2}$$

$$\frac{d}{dx} (x^{b}) = 5x^{4}$$

$$\frac{d}{dx} (x^{b}) = 10x^{4}$$

$$\frac{d}{dx} (x^{b}) = 10x^{4}$$

$$\frac{d}{dx} (x) = 1$$

$$= \frac{1}{2}$$

$$= \frac{1}{2$$

10.0

8%

dx

0 - 2- 20

$$= \lim_{\delta x \to 0} a^{\chi} \left(a d \delta x - 1 \right)$$

$$= a^{\chi} \lim_{\delta \chi \to 0} a d \left(a d \delta \chi - 1 \right)$$

$$= a^{\chi} \lim_{\delta \chi \to 0} a d \left(a d \delta \chi - 1 \right)$$

$$= a^{\chi} \ln a \qquad \| \lim_{\chi \to 0} \frac{a^{\chi} - 1}{\chi} = \ln a$$

$$= a^{\chi} \ln a \qquad \| \lim_{\chi \to 0} \frac{a^{\chi} - 1}{\chi} = \ln a$$

$$= \frac{d}{d\chi} (a^{\chi}) = a^{\chi} \ln a \qquad \text{Proved}$$

ENGINGERSING JE MATHEMATICS

$$\frac{d}{dx} (e^{x}) = e^{x}$$

y = ex Let do and by be the small increment in x and y respectively

$$y + \delta y = e^{x + \delta x}$$

$$\Rightarrow \delta y = e^{x + \delta x} - y$$

$$= e^{x + \delta x} - e^{x}$$

$$\Rightarrow \frac{\delta y}{\delta x} = e^{\frac{x + \delta x}{\delta x}} - e^{x}$$

$$\frac{dy}{dx} \rightarrow \lim_{\delta x \to 0} \frac{dy}{dx}$$

$$= \lim_{\delta n \to 0} \frac{e^{\alpha} + \delta n - e^{\alpha}}{\delta n}$$

$$= \lim_{\delta n \to 0} e^{n} (e^{\delta n} - 1)$$

$$= e^{\alpha t} \lim_{d \to 0} \frac{e^{\beta t} e^{\beta t} - 1}{5\pi}$$

$$\frac{d}{dx}(\sin \pi) = \cos x$$

Let bx and dy be the small increment in x and y respectively. $y + by = sin(x + \delta x)$

atta i and and the

 $\lim_{x \to 0} \frac{e^{x}-1}{x} = 1$

= by = Sin(act bac) - sind

Farth Tok

$$\Rightarrow \delta y = \sin(\alpha + \delta x) - y$$
$$= \sin(\alpha + \delta x) - si$$

$$\frac{d}{dx} = \lim_{\lambda \to 0} \frac{by}{bx} = \lim_{\lambda \to 0} \frac{\sin((x+bx) - \sin x)}{bx} \| \frac{2\cos}{\sin(x-\sin 0)} + 2\cos(x+bx+x) - \frac{\sin x}{2} - \frac{2\cos(x+bx)}{bx} + \frac{\sin x}{2} - \frac{\cos(2x+bx)}{2} - \frac{\sin x}{2} - \frac{\sin x}{2} - \frac{\sin x}{2} - \frac{\cos(2x+bx)}{2} - \frac{\sin x}{2} - \frac{\sin x}{2} - \frac{\sin x}{2} - \frac{\cos(2x+bx)}{2} - \frac{\sin x}{2} - \frac{\sin$$

y= cos+

Let δx and δy be the small increment in x and y respectively.

$$\Rightarrow \delta y = \cos(x + \delta y) - y$$

= $\cos(x + \delta y) - \cos x$

 $\frac{d}{dx} = \lim_{\delta x \to 0} \frac{dy}{dx}$

$$= \lim_{\delta x \to 0} \frac{f(x+ix) - f(x)}{\delta x}$$

$$= \lim_{\delta x \to 0} \frac{\cos(x+ix) - \cos x}{ix} \qquad \iint_{z \to z \sin \frac{c+i}{2}, \sin \frac{c+i}{2}}$$

$$= \lim_{\delta x \to 0} \frac{\cos(x+ix) - \cos x}{ix} \qquad \iint_{z \to z \sin \frac{c+i}{2}, \sin \frac{c+i}{2}}$$

$$= \lim_{\delta x \to 0} \frac{2\sin(x+ix+ix) - \sin(x+ix-ix)}{\delta x}$$

$$= -\lim_{\delta x \to 0} \frac{\sin(2x+ix)}{\delta x} \qquad \lim_{\delta x \to 0} \frac{\sin \frac{5\pi}{2}}{\frac{ix}{2}}$$

$$= -\sin(\frac{2x+i}{2}) \qquad \lim_{\delta x \to 0} \frac{\sin \frac{5\pi}{2}}{\frac{ix}{2}}$$

$$= -\sin(\frac{2x+i}{2})$$

$$= -\sin(\frac{2x+i}{2})$$

$$= -\sin x$$

$$(i) = \frac{d}{dx} (\tan x) = \sec^{2} x$$

$$y = \tan x$$
Let dx and by be the small increment in x and y respectively.
$$y + \delta y = \tan(x+ix) - y$$

$$= -\sin(x+ix) - y$$

$$= -\sin(x+ix) - y$$

$$= \lim_{D \to -0} \frac{\sin(\pi + dx)}{(2\omega(2\pi + dx))} = \frac{\sin x}{2\omega x}$$

$$= \lim_{D \to -0} \frac{\sin(\pi + dx)(2\omega x - \frac{2\omega(2\pi + dx)}{2\omega x}) \sin x}{(2\omega(2\pi + dx))(2\omega x - \frac{2\omega(2\pi + dx)}{2\omega x})}$$

$$= \lim_{D \to -0} \frac{\sin(\pi + dx)(2\omega x - dx)}{(2\omega(2\pi + dx))(2\omega x - dx)}$$

$$= \lim_{D \to -0} \frac{4\ln dx}{2\pi x} = \frac{1}{4\ln \pi}$$

$$= \frac{1}{(2\omega x - 2\omega x)}$$

$$= \frac{1}{(2\omega x - 2\omega x)} = \frac{1}{2} \frac{1}{(2\omega x - 2\omega x)}$$

$$= \frac{1}{(2\omega x - 2\omega x)} = -\frac{1}{(2\omega x - 2\omega x)}$$

$$= \frac{1}{dx} (2\omega x x) = -\frac{1}{2} \frac{1}{(2\omega x - 2\omega x)}$$

$$= \frac{1}{dx} (2\omega x x) = -\frac{1}{2} \frac{1}{(2\omega x - 2\omega x)}$$

$$= \frac{1}{dx} (2\omega x x) = -\frac{1}{2} \frac{1}{(2\omega x - 2\omega x)}$$

y.

(1)
$$\frac{d}{dx} (\tan^2 + \pi) = \frac{1}{1 + \pi^2}$$

(1) $\frac{d}{dx} (\cos^{-1} - \pi) = \frac{-1}{2 + \pi^2}$
(1) $\frac{d}{dx} (\cos^{-1} - \pi) = \frac{1}{|x|\sqrt{\pi^2 - 1}}$
(1) $\frac{d}{dx} (\cos^{-1} - \pi) = \frac{-1}{|x|\sqrt{\pi^2 - 1}}$
Digebra of Derivatives
Let u and v be two differentiable functions of π . Then
1) $\frac{d}{dx} (u + v) = \frac{du}{d\pi} + \frac{dv}{d\pi}$
2) $\frac{d}{d\pi} (u + v) = \frac{du}{d\pi} + \frac{dv}{d\pi}$
3) $\frac{d}{d\pi} (uv) = \sqrt{\frac{du}{d\pi}} + \frac{dv}{d\pi}$
4) $\frac{d}{dx} (\frac{u}{v}) = \sqrt{\frac{du}{d\pi}} + \frac{u \cdot dv}{d\pi}$
5) $\frac{d}{d\pi} (cu) = c \cdot \frac{du}{d\pi}$
Ex- $y = \pi^2 + \pi^2$

$$y = y^{2} + x^{2}$$

find dy
dx =?
$$y = x^{2} + x^{2}$$

3. 37. - 1 - 2.75

$$\frac{dy}{dx} = \frac{d}{da} (x^2 + a^2)$$

$$= \frac{d}{da} (x^2) + \frac{d}{da} (x^2)$$

Coln

- 4x6+2a Q. y = Sina-cosa dy = d (sinx - cosx) $= \frac{d}{dx} (\sin x) - \frac{d}{dx} (\cos x)$ = Cosx - (-sinx) = Cosx+ sinx Q. y= Sinx. Cosx $\frac{dy}{dx} = \frac{d}{dx} (\sin x \cdot \cos x)$ = the state of corr. d (sinx) + sina. d (corr) = Cosa. Cosa+ sina. (-sina) Cosz2 - Stn 22 C052% Q. d (21) = start the telelogy sinn. Md. (a) - x. dx (sin x) (sina)2 where above to see you alight as small a sh = Stra-1 - 7. COST Sin2 x

sing - xcosz sin²x

Ans

ENGENEERING MATHEMATECS 26/5/22

$$Q \cdot y = \frac{1 - \cos x}{1 + \cos x}$$

$$\frac{4}{1 + \cos x}$$

$$\frac{4}{1 + \cos x} = \frac{1}{2 + \cos x} \frac{d}{dx} (1 - \cos x) - (1 - \cos x) \frac{d}{dx} (1 + \cos x)$$

$$= (1 + \cos x) \frac{d}{dx} (1 + \cos x)^{2}$$

$$= (1 + \cos x) (0 + \sin x) - (1 - \cos x) (0 - \sin x)$$

$$= (1 + \cos x)^{2}$$

$$= \frac{1}{2 + \cos x} \frac{(1 + \cos x) + \sin(1 - \cos x)}{(1 + \cos x)^{2}}$$

$$= \frac{1}{2 + \cos x} \frac{(1 + \cos x) + \sin(1 - \cos x)}{(1 + \cos x)^{2}}$$

$$= \frac{1}{2 + \cos x} \frac{(1 + \cos x) + \sin(1 - \cos x)}{(1 + \cos x)^{2}}$$

6.
$$\int = \frac{1 - \tan x}{1 + \tan x}$$

Find $\frac{dy}{dx} = 7$
sola-
 $\frac{dy}{dx} = (1 + \tan x) \frac{d}{dx} (1 - \tan x) = (1 - \tan x) \frac{d}{dx} (1 + \tan x)$
 $(1 + \tan x)^{2}$
 $= (1 + \tan x) (0 - \sec^{2}x) - (1 - \tan x) (1 + \sec^{2}x)$
 $(1 + \tan x)^{2}$
 $= \sec^{2}x \int -1 - \tan x - 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(1 + \tan x)^{2}$
 $= -2 \sec^{2}x \int (-1 - \tan x) = 1 + \tan x$
 $(\pi + \tan x)^{2}$
 $= (\pi^{3} + 1) \frac{d}{dx} (\pi^{2} - 1) = (\pi^{2} - 1) (3\pi^{2} + 1)$
 $= (\pi^{3} + 1) (2\pi) - (\pi^{2} - 1) (3\pi^{2} + 1)$
 $= 2\pi (6\pi^{3} + 1) - 3\pi^{2} (\pi^{2} - 1) = 4\pi s$

Demustive of a composite function (the chain Rule)
Let, y = f(a) be a differentiable function of u.

$$u = g(x)$$
 be a differentiable function of x.
Then, $u = f(a)$ is a composite function of x.
Then $du = du = du$.
 $u = du = du = du$.
 $g = cosx^2$
Soln - Let $u = x^2$
 $g = cosu$.
 $g = du = -sinu$
 $u = x^2$.
 $du = 2x$.
 $du = 2x$.
 $du = du = du$.
 $du = x^2$.
 $du = du = du$.
 $du = x^2$.
 $du = du = du$.
 $u = x^2$.
 $du = du = du$.
 $u = x^2$.
 $du = -sinu \cdot 2x$.
 $= -sinu \cdot 2x$.
 $= -sinx^2 \cdot 2x$.
 $= 2x sinx^2$ (dus.)
Soln - $du = -sinx^2 d_x(x^2)$.

Example y= (22+22-1)5 Soln - $\frac{dy}{dx} = 5(x^2 + 2x - 1)^4 \frac{d}{dx}(x^2 + 2x - 1)$ = 5 (x2+2x-1)4 (2x+2) = 5 · $(\chi^2 + 2\chi - 1) 2(\chi + 1)$ = $10(\alpha+1)(\chi^2+2\chi-1)^4$ Q, y = See(tan x)ad or we hoat ant sarries drive Soln - no print and to portable allog of stons & laste Loss 1 as another all to have to the uswel the clices and is tred on and want on and the part $\frac{dy}{dx} = see(tanx) \cdot tan(tanx) \frac{d}{dx}(tanx)$ = sec (tanz). tan(tanz): sec2 2 (Ans

Eventue Manucanics

$$\begin{aligned}
\varphi = \frac{2}{2} \frac{$$

$$ln y = ln (sin x) tan$$

$$l l log xn = mlog x$$

$$\Rightarrow lny = tan x \cdot ln (sin x)$$
Now, differentiating both sides with lespect to x. $\left[\frac{d}{dx} (uv) + \frac{d}{dx} + \frac{u}{dx} + \frac{u}$

of

19 - when a given function is expressed as a product of canonal tonctions, we use logarithmic differentiation. Ex- Differensiecte $y = (a-1)^2 \sqrt{32^2-1}$ $\pi^{+}(6-7\pi^{2})\partial_{2}^{3}$ soln - Taking logarithm to both sides = $ln \left\{ (x-1)^2 \overline{13x^2-1} \right\} = 4n \left\{ x^2 (4-72^2)^2 \right\}$ = $\ln (n-1)^2 + \ln (3n^2-1)^{\frac{1}{2}} - \int \ln n^2 + \ln (6-7n^2)^{\frac{3}{2}} \int$ $= 2 \ln (x-1) + \frac{1}{2} \ln (3x^2-1) - 7 \ln x + \frac{3}{2} \ln (6-7x^2)$ Now, differentiating both sides with respect to x. Concentration and the second $\frac{1}{y} \frac{dy}{dx} = 2 \cdot \frac{1}{x-1} + \frac{1}{2} \cdot \frac{1}{3x^2-1} \cdot \frac{d}{dx} (3x^2-1) - 7 \frac{1}{x} - \frac{3}{2}$ $\frac{1}{6-12^2} \cdot \frac{d}{dx} (6-42^2)$ $= \frac{2}{2-1} + \frac{1}{7(3x^2-1)} \cdot \frac{3}{x} - \frac{3}{2(6-7x^2)} \cdot \frac{7}{(-14x)}$ $= \frac{2}{\chi_{-1}} + \frac{3\chi}{3\chi_{-1}} + \frac{4}{\chi} + \frac{24}{6-4\chi_{-1}}$ $\frac{3}{44} = y \left[\frac{2}{3-1} + \frac{3\pi}{32-1} - \frac{7}{\pi} + \frac{21}{6-7\pi^2} \right]$

$$\frac{1}{3} \left[\frac{2}{2-1} + \frac{3x}{3x^2-1} - \frac{7}{2x} + \frac{21}{6-7x^2} \right]$$

31/5/22

ENGENEERING MATHEMATICS

Differentiation of implict knewton

Implict function

= (x-1)2 13x2-

× 7 16-7×2

If y can't be written interms of a only uniquely then y is called an implicit function.

an engine where all start and and

 $xy^2 + x^2y = 5$ $y [xy + x^2]$

 $F_{x} = find \quad \frac{dy}{dx} \quad \text{if} \quad \pi^2 + y^2 - a^2 = 0$

Soln - $x^2 + y^2 - a^2 = 0$ Differitation boths sides with respect to x

 $2\alpha + 2y \frac{dy}{dx} = 0 = 0$

 $\Rightarrow \frac{dy}{dx} = -\frac{x}{y}$ Ans

x - find
$$\frac{dy}{dx}$$
 if $y^3 - 3x^2y - 2x = 10$

soln- $y^3 - 3x^2y - 2x = 10$ Differentiating both sides with respect to x

$$3y^2 \cdot \frac{dy}{dx} - 3\left(y \cdot 2\alpha + \alpha^2 \cdot \frac{dy}{dx}\right) - 2 = 0$$

$$\Rightarrow \frac{3y^2}{dx} \cdot \frac{3y^2}{dx} - 6xy - 3x^2 \cdot \frac{3y^2}{dx} - 2 = 0$$

$$\Rightarrow \frac{dy}{dx} (3y^2 - 3x^2) = 2 + 6xy$$

$$\begin{aligned} \hat{a}_{x} \stackrel{d}{dx} &= \frac{246xy}{y_{y}^{2} - x^{2}} \\ &= \frac{2(1+3xy)}{3(y^{2} - x^{2})} \quad \text{Integration of the states with respect to x} \\ \hat{b}_{x} \stackrel{d}{dx} \stackrel{d}{dx}$$

ENGENEERING MATHEMATTES

2/6/22

Q. yn = x siny, find dy = ? +2003 0 - 10 +1 10 End +1 soln- yre = x siny ln (yn) = ln. (x stry) > x lny = Siny lnx Now differentiating both stdes with respect to 2 > log. 1 + x. I dy = lox losy dy + sloy. I A dy [- lnx eosy] = sing - lny $=\frac{dy}{dx} = \frac{dy}{x} - \frac{dy}{dy}$

x - lox cosy

sites till to staril fill

Differentiation of parametric function

Let,
$$\alpha = \phi(t)$$

 $y = \psi(t)$, t is a parameter
hen,
 $\frac{dy}{dx} = \frac{dy}{dt}$, $\frac{dt}{dx}$
 $= \left[\frac{dy}{dt} \right] \frac{d\alpha}{dt} = \frac{\psi'(t)}{\phi'(t)}$

Br. find $\frac{dy}{dx}$ if st = a(cost + tsint)y = a(sint - tcost)

soln -
$$y = a(sint - tcost)$$

$$\frac{dy}{dt} = a \left\{ cost - (cost \cdot 1 + t \cdot (-sint)) \right\}$$
$$= a \left(cost - cost + t sint \right)$$

.= atsint

$$\pi = a(\cos t + t \sin t)$$

$$\frac{d\pi}{dt} = a\left[-\sin t + \sin t\right]$$

$$= a\left[-\sin t + \sin t + \tan t + \tan$$

$$i \cdot \frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{dt shut}{dt cost} = tant$$

Ex. $x = 3cost - 2ca^{3}t$
 $y = 3sint - 2sin^{3}t$
 $\frac{dy}{dx} = ?$
soln - $y = 3sint - 2sin^{3}t$
 $\frac{dy}{dt} = 2a \frac{d}{dt} \frac{d}{dt} = 3. (bot - 2.3 sin^{2}t \cdot cost)$
 $= 3cost (1 - 2sin^{2}t)$
 $= 3cost (2 - 2sin^{2}t)$
 $= 3cost - 2ca^{3}t$
 $\frac{dx}{dt} = -3. sint - 2.3 cost - (-sint)$
 $= -3sint + 2.3 cost - (-sint)$
 $= -3sint + 2.3 cost - (-sint)$
 $= -3sint + 2.3 cost - (-sint)$
 $= 3sint (2cost - 1)$
 $= 3sint (-1 + 2cos^{2}t)$
 $= 3sint (-2cost - 1)$
 $= 3sint - cost$
 $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$
 $= cott$
Differentiation with lespest to a function
Let $y = f(x)$
 $x = g(x)$, be two differentiable functions
 $rlow_{1} \frac{dy}{dx} = \frac{dy}{dx} / \frac{dx}{dx} = \frac{f'(x)}{g(x)}$

Differentiate tan 1 x with respect to cos 1 x.

Boln - Let y= tanda Z = Casta

 $\frac{dy}{dx} = \frac{1}{1+x^2}$

$$\frac{dz}{dx} = \frac{-1}{2c+\sqrt{1-x^2}}$$

$$\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}}$$

$$\frac{-1}{12 - x^2} = \frac{11 - x}{1 + x^2}$$

Et - Differentiate sin x with respect to (ot x)solin = Let y = sin xZ = cot x

$$\frac{dz}{dx} = -\cos z$$

 $\frac{dy}{dz} = \frac{dz}{dz} = \frac{\cos x}{-\cos x} = \frac{-\cos x}{\cos x}$ $\frac{dy}{dz} = \frac{dz}{dx}$

EVENILEERING MATHEMATTIC 416/22
Ex - Find
$$y_2$$
 if $y = x^5 + 4x^3 - 2x^2 + 1$
soln - $y = x^5 + 4x^3 - 2x^2 + 1$
 $\frac{dy}{dx} = y_1 = 5x^4 + 12x^2 - 4x$
 $y_2 = \frac{d}{dx} (5x^4 + 12x^2 - 4x)$
 $= 20x^3 + 24x - 4$ [Ans-

Ex. Had
$$y_{2}$$
 if $y = (ax+b)^{m}$
solo - $g = (ax+b)^{m}$
 $\Rightarrow y_{1} = m(ax+b)^{m-1}$
 $= \frac{d}{dx}(ax+b)^{m-1}$, a
 $= am(ax+b)^{m-1}$
 $\Rightarrow y_{2} = am(m-1)(ax+b)^{m-2}$, a
 $= a^{2}m(m-1)(ax+b)^{m-2}$, a
 $= a^{2}m(m-1)(ax+b)^{m-2}$, a
 $= a^{2}m(m-1)(ax+b)^{m-2}$, a
 $= a^{2}m(m-1)(ax+b)^{m-2}$, a
 $= \frac{d^{2}m(m-1)(ax+b)^{m-2}}{dx^{2}} - x \frac{dy}{dx} + p^{2}y = 0$
Soln-
Froof $y = sin(Pt)$, $x = sint$
 $\Rightarrow t = sin^{2} + x$
 $= sin(Psin^{2} + x)$
Now, differentiating both sides with leaped
 $\frac{dy}{dx} = cos(Psin^{2} + x) \frac{d}{dx}(Pcin^{2} + x)$
 $= cos(Psin^{2} + x) \cdot P \cdot \frac{1}{(1-x^{2})}$
 $= \frac{1}{(1-x^{2})} \cdot \frac{dy}{dx} = Pcos(Psin^{2} + x)$
 $= p^{2} \left[1 - sin^{2}(Psin^{2} + x)\right]$
 $= p^{2} \left[1 - sin^{2}(Psin^{2} + x)\right]$
 $= p^{2} \left[2 - sin^{2}(Psin^{2} + x)\right]$
 $(1-x^{2}) \left(\frac{dy}{dx}\right)^{2} = P^{2} \cdot P^{2}y^{2} = -(1)$
Again differentiating eqn(1) with respect to $\left(\frac{dy}{dx}\right)^{2} = (-2x) + (1-x^{2}) 2 \frac{dy}{dx} + \frac{d^{2}y}{dx^{2}}$

22

$$\frac{1}{\sqrt{1-x^2}}, \frac{dy}{dx} = P\cos(\pi\sin^2x)$$

$$= \frac{1}{\sqrt{1-x^2}} \cdot \frac{dy}{dx} = P\cos\left(\frac{y}{\sin^2 x}\right)$$

$$s(Psin-1x), P.$$

$$1$$

$$1-x^{2}$$

dx

os (
$$Psin-1$$
 ox), P , $\frac{1}{1-n^2}$

$$c(lsin - 1 \propto) = (lsin + \alpha)$$

los (lsin - 1 \sin), $P_{-} = \frac{1}{2}$

(Psin=1 x)
$$\frac{d}{dx}$$
 (Psin=1 x)

0]

$$(Pt), x = sint$$

$$\begin{array}{l} + -2\alpha \left(\frac{dy}{dx} \right)^{2} + 2(1-x)^{2} \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} + 2p^{2}y \cdot \frac{dy}{dx} = 0 \\ \\ Dividing by 2 \frac{dy}{dx} \\ \Rightarrow -x \frac{dy}{dx} + (1-x^{2}) \frac{d^{2}y}{dx^{2}} + p^{2}y = 0 \\ \Rightarrow (1-x^{2}) \frac{d^{2}y}{dx^{2}} - x \cdot \frac{dy}{dx} + p^{2}y = 0 \\ Proved \\ \hline (1+x^{2}) \frac{d^{2}y}{dx^{2}} + x \cdot \frac{dy}{dx} + p^{2}y = 0 \\ Proved \\ \hline (1+x^{2}) \frac{d^{2}y}{y_{2}} + 2xy\frac{dy}{y_{3}} = 0 \\ \hline \\ \text{Soln} - \frac{p_{\text{roof}}}{p_{2}} \\ \frac{y}{y^{2}} = \frac{1}{1+x^{2}} \\ \Rightarrow (1+x^{2}) \frac{y_{3}}{y_{3}} = 1 \\ (1+x^{2}) \frac{y_{3}}{y_{3}} = 1 \\ (1+x^{2}) \frac{y_{3}}{y_{4}} = 0 \\ \hline \\ \text{Differentiating eqn(1) with respect to x.} \\ \frac{y_{1}2x}{y_{1}2x} + (1+x^{2})\frac{y_{2}}{y_{2}} = 0 \\ \Rightarrow (1+x^{2})\frac{y_{2}}{z} + 2xy\frac{y_{3}}{z} = 0 \\ \hline \\ \text{Proved} \\ \hline \\ \text{Q} \cdot \text{Sf} \quad 2y = x \\ (1+x^{2})\frac{y_{4}}{z} + 2xy\frac{y_{4}}{z} = 0 \\ \hline \\ \hline \\ \text{To show } y_{2} \text{ is a constant we have to prove that } \frac{d}{dx}(y_{2}). \end{array}$$

0

$$2y = x(1 + \frac{dy}{dx})$$

2.6

Differentiating both sides with respect to x.

y3=0

2.
$$\frac{dy}{dx} = (1 + \frac{dy}{dx}) \cdot 1 + \chi \cdot \frac{d^2y}{dx}$$

2. $\frac{dy}{dx} = (1 + \frac{dy}{dx}) \cdot 1 + \chi \cdot \frac{d^2y}{dx}$
2. $\frac{dy}{dx} = 1 + \frac{dy}{dx} + \chi \cdot \frac{d^2y}{dx^2}$
3. $\frac{dy}{dx} = 1 + \frac{dy}{dx} + \chi \cdot \frac{d^2y}{dx^2}$
3. $\frac{dy}{dx} = -\chi \cdot \frac{d^2y}{dx} = 1$

$$\Rightarrow \frac{dy}{dx} - x \frac{d^2y}{dx^2} = 1$$

$$\Rightarrow y_2 - xy_2 = 1 - (2)$$
Again differentiating eqn (2) with

$$y_2 - y_2 \cdot 1 - xy_3 = 0$$

$$\Rightarrow y_2 - y_2 - xy_3 = 0$$

$$\Rightarrow y_3 = 0$$

$$\Rightarrow y_2 = 0$$

$$\Rightarrow y_2 \text{ is a constant} \quad |Prove$$

respect to x.

Pastial differentiation

functions of two variables

Let $f: X \times V \longrightarrow Z$ is a function of two variables if there exists a unique element Z = f(X, y) in Z corresponding to every pair (X, y) in XXY .

> Dependent Variable.

$$\frac{\partial z}{\partial x} = \lim_{\delta x \to 0} \frac{f(\alpha + \delta x, y) - f(x, y)}{\delta x}$$

$$\frac{\partial z}{\partial y} = \lim_{\delta y \to 0} \frac{f(\alpha + \delta x, y) - f(x, y)}{\delta y}$$
Into: tions

 $Br - find \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ Z = 2x2y + xy2 + 5xy soln - $\frac{\partial z}{\partial x} = 2y \cdot 2x + y^2 \cdot 1 + 5y \cdot 1$ (Treat y as constant) $= 4xq + y^2 + 5y$ bavin 191 dz = 22²·1 + ×·2y+52·1 dy (Treat × as constant) $= 2x^2 + 2xy + 5x$ $E_x - Z = 2xy + x^2$ soln - $\frac{\partial z}{\partial x} = 2y \cdot 1 + 2x$ = 2y+2x (VUS) + TRODAD CONCERT $\frac{\partial z}{\partial y} = 2x + 0$ = 2x · add a first to share of

Successive differentiation

$$y = x^{5}$$

$$\frac{dy}{dx} = 5x^{4}$$

$$\frac{d^{2}y}{dx^{2}} = 20x^{3}$$

$$\frac{d^{3}y}{dx^{2}} = 60x^{2}$$

$$\frac{d^{3}y}{dx^{3}} = 60x^{2}$$

$$\frac{d^{4}y}{dx^{3}} = 120x$$

$$\frac{d^{4}y}{dx^{4}} = 120x$$

$$\frac{d^{5}y}{dx^{4}} = 120$$

 $\frac{d b y}{d x^{b}} = 0$

das

Defination

Let 't' be a differentiable function of x, then the derivative of f(x) may determine another differentiable function of x. The new function f'(x) is called the 1st derivative of f.

If f'(x) is differentiable, we can find it's derived function f"(x) and call it the derived function of 2nd order. The process of finding higher order derivatives is called successive differentiation.

Q. At z = & log(
$$y^2 + y^2$$
) + $\tan^{-1}(\frac{y}{x})$ from that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$
soln - z = log($x^2 + y^2$) + $\tan^{-1}(\frac{y}{x})$
 $\frac{\partial z}{\partial y} = \frac{1}{x^2 + y^2} \cdot \frac{\partial}{\partial x} (x^2 + y^2) + \frac{1}{1 + \frac{y^2}{x^2}} \cdot \frac{\partial}{\partial x} (\frac{y}{x})$
 $= \frac{1}{x^2 + y^2} \cdot 2x + \frac{x^2}{x^2 + y^2} \cdot y(-\frac{1}{x^2})$

 $= \frac{2\pi}{\pi^{2} + y^{2}} + \frac{2^{2}y}{\pi^{2} + y^{2}} \left(-\frac{1}{\pi^{2}}\right)$ $= \frac{2\pi}{\pi^{2} + y^{2}} - \frac{y}{\pi^{2} + y^{2}}$

 $= \frac{2x-y}{x^2+y^2}$

0

$$\frac{d^{2} \mp}{\pi^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial \pi}{\partial \pi} \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{2x - y}{\pi^{2} + y^{2}} \right)$$

$$= \pi^{2} + y^{2} \frac{\partial}{\partial x} (2x - y) - (2x - y) \frac{\partial}{\partial x} (x^{2} + y^{2})$$

$$= (x^{2} + y^{2})^{2}$$

$$= (x^{2} + y^{2})^{2} - (2x - y) 2\pi$$

$$= (x^{2} + y^{2})^{2} + (x^{2} + y^{2})^{4}$$

$$= 2(\frac{x^{2}+y^{2}}{(x^{2}+y^{2})^{2}} - 2x(2x-y) = \begin{bmatrix} 2x^{2}+2y^{2} - 4x^{2}+2xy \\ (x^{2}+y^{2})^{2} \end{bmatrix}$$

10 martinol anorth sea

=
$$2\left(\frac{\chi^2 + y^2 - 2\chi^2 + \chi}{\chi^2 + y^2}\right)$$

 $(\chi^2 + y^2)^2$

Now,
$$\frac{\partial z}{\partial y} = \frac{\partial}{\partial y} \left(\log (\pi^2 + y^2) + \tan^{-2} \left(\frac{y}{\pi} \right) \right)$$

= $\frac{1}{\pi^2 + y^2} \cdot \frac{\partial}{\partial y} \left(\pi^2 + y^2 \right) + \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2} + \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2} + \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2} + \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2} + \frac{1}{\pi^2 + y^2} = \frac{1}{\pi^2 + y^2$

$$x^2 + y^2$$
 δy $1 + \frac{y^2}{x^2} \cdot \frac{\delta}{\delta x} \left(\frac{1}{x}\right)$

$$\frac{1}{x^2+y^2} \cdot \frac{2y}{x^2+y^2} + \frac{1}{x^2+y^2} \cdot \frac{1}{x}$$

$$\frac{2y}{x^{2}+y^{2}} + \frac{2x}{x^{2}+y^{2}}$$

$$\frac{2y}{x^{2}+y^{2}} + \frac{2x}{x^{2}+y^{2}}$$

$$\frac{3^{2}x}{3y^{2}} = \frac{3}{3y} \left(\frac{3x}{3y} \right)$$

$$= \frac{3}{3y} \left(\frac{2y+x}{x^{2}+y^{2}} \right)$$

$$= \left(x^{2}+y^{2} \right) \frac{3}{3y} \left(2y+x \right) - \left(2y+x \right) \frac{3}{3y} \left(x^{2}+y^{2} \right)$$

$$= \left(x^{2}+y^{2} \right) \frac{3}{3y} \left(2y+x \right) - \left(2y+x \right) \frac{3}{3y} \left(x^{2}+y^{2} \right)$$

$$= \left(x^{2}+y^{2} \right) \frac{2}{2} - 2y+x \left(2y \right)$$

$$= \left(x^{2}+y^{2} \right) \frac{2}{(x^{2}+y^{2})^{2}}$$

$$= \left(x^{2}+y^{2} \right) \frac{2}{(x^{2}+y^{2})^{2}}$$

$$= 2(x^{2}+y^{2}+y^{2}) - \frac{2y}{(x^{2}+y^{2})^{2}}$$

$$= 2(x^{2}+2y^{2} - 4y^{2} - 2xy)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2y^{2} + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} \right)$$

$$= 2\left(\frac{x^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}+y^{2})^{2}} + 2 + \frac{3y^{2}}{(x^{2}$$

*

ENGINEERING MATHEMATICS 2nd order partial differentiation Z = f (x,y) $\frac{\partial}{\partial x}\left(\frac{\partial x}{\partial x}\right) - \frac{\partial^2 x}{\partial x^2} = Z x x = f x x$ $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y \partial x} = zyx = fyx$ $\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial x \partial y} = z \cdot xy = f \cdot xy$ the Star - Diglaman) $\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) = \frac{\partial^2 z}{\partial y^2} = z y y = t y y$ - 18 2 It we differentiate $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ with respect to x or y then we get higher order partial derivatives. Br-find fox and foxy, fyx where +(x,y) = x + y 3 + 3xy 50 1 3 solve $fa = \frac{\partial}{\partial x} (x^3 + y^3 + 3xy)$ $= 3\pi^2 + 0 + 3y \cdot 1$ = 372 + 34 $f_{MX} = \frac{\partial}{\partial x} (f_X)$ $= \frac{\partial}{\partial \alpha} (3x^2 + 3y)$ = 6x + 0 = 6x $fy = \frac{\partial}{\partial y} \left(x^3 + y^3 + 3xy \right)$ 0+342+37.1 = 3/2+32

$$\begin{aligned} & \frac{1}{2} x_{y} = \frac{3}{2} \cdot (y_{y}) \\ &= \frac{1}{2} \cdot (x_{y}^{2} + 9x) \\ &= 0 + 3 = 3 \\ & \frac{1}{2} y_{x} = \frac{3}{2} \cdot (+x) \\ &= \frac{3}{2} \cdot (+x) \\ &= \frac{3}{2} \cdot (x^{2} + 2y) \\ &= 0 + 3 = 3 \end{aligned}$$

$$\begin{aligned} & 0 + 3 = 3 \\ & 0 + 3 = 3 \\ & 0 + 3 = 3 \end{aligned}$$

$$\begin{aligned} & 0 + 3 = 3 \\ & 0 + 3 = 3 \\ & 0 + 3 = 3 \end{aligned}$$

$$\begin{aligned} & 0 + 3 = 3 \\ & 0 + 3 = 3 \\ & 0 + 3 = 3 \end{aligned}$$

$$\begin{aligned} & 0 + 3 = 3 \\ & 0 + 3 = 3 \\ & 0 + 3 = 3 \\ & 0 + 3 = 3 \end{aligned}$$

$$\begin{aligned} & 0 + 3 = 3 \\ & 0 + 3 \\$$

$$= (\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}})^{2}$$

$$= 2(\pi^{2} + \frac{y^{2} - 2\pi^{2} + \pi y}{(\pi^{2} + y^{2})^{2}})^{2} = 2(-\frac{\pi^{2} + \frac{y^{2} + \pi y}{(\pi^{2} + y^{2})^{2}})^{2}$$

$$\text{Mosy } \frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(1 + \frac{1}{(\pi^{2} + y^{2}) + 4\pi^{2}})^{2} + \frac{1}{(\pi^{2} + y^{2})^{2}})^{2}$$

$$\frac{\partial (\pi^{2} + y^{2})}{(\pi^{2} + y^{2})^{2}} = \frac{\partial}{(\pi^{2} + y^{2})^{2}} + \frac{1}{(\pi^{2} + y^{2})^{2}} + \frac{1}{(\pi^{2} + y^{2})^{2}} + \frac{1}{(\pi^{2} + y^{2})^{2}} + \frac{1}{(\pi^{2} + y^{2})^{2}}$$

$$= \frac{2y + \pi}{\pi^{2} + y^{2}}$$

$$\frac{\partial^{2} \pi}{2^{2} + y^{2}} = \frac{\partial}{2y}(\frac{\partial z}{2y})$$

$$= \frac{\partial}{\partial y}(\frac{2y + \pi}{\pi^{2} + y^{2}})$$

$$= (\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}}$$

$$= 2(\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}}$$

$$= 2(\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}}$$

$$= 2(\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}}$$

$$\text{Mowy } \frac{\partial^{2} \pi}{\partial x^{2}} + \frac{\partial^{2} \pi}{\partial y^{2}}$$

$$= 2(-\frac{2\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}} + \frac{2(\pi^{2} + \frac{y^{2}}{(\pi^{2} + y^{2})^{2}})$$

ý,

$$= 2\left(\frac{A}{2}+\frac{y^{2}}{y^{2}+y^{2}}\right)^{2}$$

$$= 0 - RHS [Proved]$$
If g(x) is the derivative of f(x), then f(x) is called the antiderivative of integral of g(x).

$$\frac{1}{2}e \int g(x) dx = f(x) + e \longrightarrow \text{ with respect to x we integrate or lowable of integration dx is the graph of $g(x)$.

$$\frac{1}{2}e \int g(x) dx = f(x) + e \longrightarrow \text{ with respect to x we integrate or lowable of integration dx .

$$\frac{1}{2}e \int g(x) dx = f(x) + e \longrightarrow \text{ with respect to x we integrate or lowable of integration dx .

$$\frac{1}{2}e \int g(x) dx = f(x) + e \longrightarrow \text{ with respect to x we integrate or lowable of integration dx .

$$\frac{1}{2}e \int g(x) dx = f(x) + e \longrightarrow \text{ with respect to x we integrate or lowable of integration dx .

$$\frac{1}{2}e \int g(x) dx = f(x) + e \longrightarrow \text{ with respect to x we integrate or lowable of integration dx .

$$\frac{1}{2}e \int cosx dx = sinx + e$$

$$\frac{1}{2}e (sinx) = cosx$$

$$\frac{1}{2}e (sinx) = cosx$$

$$\frac{1}{2}e (sinx + 2) = cosx$$

$$\frac{1}{2}e (sinx + 2) = cosx$$

$$\frac{1}{2}e (sinx + 4) = cosx$$$$$$$$$$$$$$

Integration homodae
1)
$$\int x^{n} dx = \frac{x^{n+2}}{n+2} + c$$

2) $\int \frac{1}{\pi} dx = \ln |x| + c$
3) $\int \cos x dx = \sin x + c$
4) $\int \sin x dx = -\cos x + c$
5) $\int \xi \sec^{2} x dx = \tan x + c$
4) $\int \sec x \tan x dx = \sec x + c$
4) $\int \sec x \tan x dx = \sec x + c$
4) $\int \sec x \tan x dx = -\csc x + c$
4) $\int e^{x} dx = e^{x} + c$
4) $\int e^{x} dx = \frac{a^{x}}{\ln a} + c$
10) $\int \frac{1}{\sqrt{1-x^{2}}} dx = \sin^{2} x + c \ e^{x} - \cot^{2} x + c$
12) $\int \frac{1}{\sqrt{1+x^{2}}} dx = \tan^{2} x + c \ e^{x} - \cot^{2} x + c$
13) $\int \frac{1}{\sqrt{1+x^{2}}} dx = 5ee^{-3} x + c \ e^{x} - \cot^{2} x + c$
14) $\int \frac{1}{\sqrt{1+x^{2}}} dx = 5ee^{-3} x + c \ e^{x} - \cot^{2} x + c$
15) $\int \int \frac{1}{\sqrt{1+x^{2}}} dx = 5ee^{-3} x + c \ e^{x} - \cot^{2} x + c$
16) $\int \frac{1}{\sqrt{1+x^{2}}} dx = 5ee^{-3} x + c \ e^{x} - \csc^{2} x + c$
17) $\int \frac{1}{\sqrt{1+x^{2}}} dx = 5ee^{-3} x + c \ e^{x} - \csc^{2} x + c$
18) $\int \int 4h(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx$
2) $\int Ah(x) dx = \lambda \int f(x) dx , \lambda \sin x \ constant.$
Another $\int 1 x^{2} + x + 1 dx$
2) $\int Ah(x) dx = \lambda \int f(x) dx + \int 1 dx$

 $\frac{\chi^{6+1}}{6+1} + \frac{\chi^{2+1}}{2+1} + \frac{\chi^{1+1}}{1+1} + \chi^{4}C$ $= \frac{\chi^{7}}{7} + \frac{\chi^{3}}{3} + \frac{\chi^{2}}{2} + \chi + c [Ans]$ Ex- Integrette $\int (4\cos x - 3e^{\chi} + \frac{2}{14 - \pi^2}) dx$ ++ vast = represental (3 $\int 4\cos x \, dx - \int 3e^{x} \, dx + 4 \int \frac{2}{41 - x^2} \, dx$ = 4 $\int \cos x \, dx - 3 \int e^{x} \, dx + 2 \int \frac{1}{\sqrt{1-\alpha^{2}}} \, dx$ 3 CO-TERAN E. KAN = 4 shon - 3ex + 2 sho + 2 + C] Ans A K des - CC

ENGINEERING MATHEMATICS

2014

- Er - Je3xdx

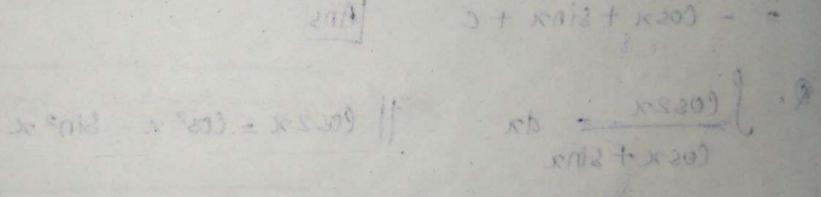
soln - frestan

 $= \int (e^3)^{\chi} d\chi$

 $= \frac{(e^3)^{n}}{\ln e^3} + c$

 $= \frac{e^{3x}}{3} + c$

xb (xao2+ rate) /



- 012

 $\frac{\cos^2 x + \sin^2 x}{\cos x + \sin x} dx$

Ex- J sin2 x dx 2+ cosx 11 Sin2 x + 000 x = 1 Sin2 x = 1 - 0052 2 $\frac{1-\cos^2 \pi}{1+\cos \alpha} d\pi \longrightarrow \frac{\text{use } a^2-b^2}{=(a+b)(a)}$ = (a+b) (a-b) SUDE JUN (tolat) wollower (tolat) = (1+cosn)(1-cosn) da de setter de setter de setter (1+cos x) - hand indicated interest of attack "application of an antipic the second and the states of the stating (1-cos x) dx as said way " is draw of the sea A = JIdx - f cosx dx at infining what a stronge at a apple - x - fina + G swallang - a ale minure to deal walt with Q. Salatsinza da || sinza = 2 sina soln - / Sln2-x+los2 x + 2 slnx #, cosx dx " = 2 sinx . Cosa = $\sqrt{(slnx+cosx)^2} dx$ =) (sinx + cosx) da - cosx + sinx + c Ans Q. J<u>Cosex</u> dx Cosx + sinx 1 los 2 x = cos2 x - Sin2 x dn - $\int \frac{\cos^2 x + \sin^2 x}{\cos x + \sin 2} dx$

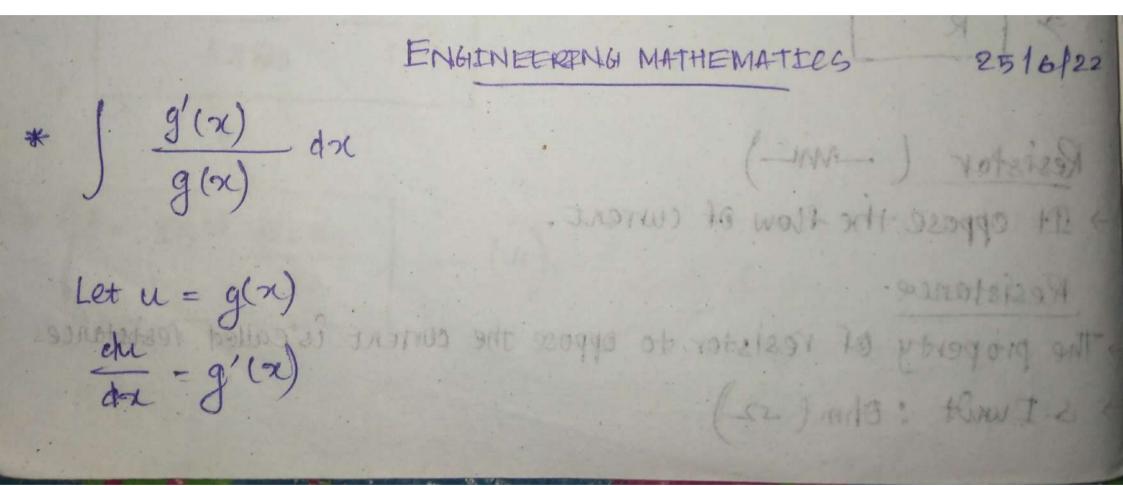
=) (corx + sinx) (cosx - sinx) dx the start of an equilated form by a contract = floosx-sinx) dx Esterior at not and and (as p (asp) + - + ub(u)]]= = Sinx + cosx + c Lons x + (u) + * Q2 J11- cos2x dx = + (gex)) + 10 @2. J12 + cos 2 x dx ter (death) do soln 2 - Svi- cosza da 12 11 3 = $\int \sqrt{s \ln^2 x + \cos^2 x - (\cos^2 x - \sin^2 x)} dx$ u+ 0+ b ichs - ist. = Jasin2-2 + Gosta - Costa + sin2-201, da stop + ut = STESHAR dx a the second second second = VZ Ssinxdx I (drad) I = - VZ COBALL Ans Kh (d+ KH) als - E with a all - all all - all all Soln 2 - JV2 + Cos2x dix usb . will 2 - the = $\int I \sin^2 x + \cos^2 x + (\cos^2 x - \sin^2 x) dx$ 2 + (+ 100 +) + C = SI sinta + cos2n + cos2n - sinta dn = $\int \sqrt{2} \cos^2 x \, dx = \sqrt{2} \int \cos x \, dx = \sqrt{2} \sin x + c$

Integration by substitution

(RAIS SPISTS (WILLIN BESS When the integrand isn't in a standard form it can sometimes be transformed to integrable form by a suitable substitution. * (f(g(x)) g'(x) dx can be converted to $= \int f(u) du$ plet u=g(x) $\frac{du}{dx} = g'(x) \qquad = 0$ = F(u) + Kdu = g'(x) dx= F(g(x)) + kBr - ((ax+b) n dx Colk 3 - [12 - CC228 day com -- Jun du man - man - man + man p Let, ú=ax+b $= \frac{1}{\alpha} \left\{ u^n du^{2-1} + e^{2\alpha n} - e^{2\alpha n} + e^{2\alpha n} \right\} =$ du = adx' du = dre 172 Siven at $= \frac{1}{a} \frac{u^{n+1}}{n+1} + c$ HA.KATE DP $= \frac{1}{a} \frac{(ax+b)^{n+2}}{n+2} + c$ To coex + C May Er- Jsin (ax+b) dx soln - f sin u. du tet, at the u= axtb $=\frac{1}{a}\int \sin u \cdot du$ AND (x faller x 200- 1 du = adx and Faller) du = dx $= \frac{1}{a} \oint (-\cos u) + c$ 2 ELPTS + COLEX + CASE X - SHARE AR

*
$$\int \cos(ax+b) dx = \frac{4}{a} \sin(ax+b) + c$$

* $\int \sec^2(ax+b) dx = \frac{4}{a} \tan(ax+b) + c$
* $\int e^{ax+b} dx = \frac{e^{ax+b}}{a} + c$
 $\int e^{5x} dx = \frac{e^{5\alpha}}{5} + c$
 $\int e^{7x+3} dx = \frac{e^{7x}+3}{7} + c$
a. $\int 2e^{4ax^2x} + \tan x \cdot \sec^2 x dx$
 $\operatorname{soln} - \int e^{u} du$
 $= e^{u} + c$
 $= e^{4ax^2x} + c$



$$\frac{1}{2} \frac{du}{du} = \int \frac{1}{u} du$$

$$= \int \frac{1}{u} du$$

$$= \ln \ln \ln + c$$

$$= \ln \ln \ln + c$$

$$= \ln \ln \ln + c$$

$$\frac{1}{2^{n} - e^{-n}} dn$$

$$\frac{1}{2^{n} - e^{-n}} dn$$

$$\frac{1}{2^{n} - e^{-n}} dn$$

$$= \int \frac{1}{2^{n}} du$$

$$= \int \frac{1}{2^{n}} du$$

$$= \ln \ln + c$$

$$= \ln \ln e^{n} - e^{-n} + c \quad [Ans]$$

$$\frac{1}{2^{n} - 2n}$$

$$= \frac{-4}{3} \ln |u| + c$$

= $-\frac{4}{3} \ln |2 - 3x| + c$ | bus

du)

$$\int \frac{dx}{2-3x}$$

Q.
$$\int \sin^{2} x \cos x \, dx$$

seln - Let $u = \sin x$
 $du = \cos x \, dx$
= $\int u^{\pm} \, dx$
= $\int \frac{u^{\pm}}{8} + c$
= $\int 2ax^{2} x \, dx$
seln - Let
 $u = x^{2}$
 $du = 2x \, dx$
So,
= $\int a^{u} \, du$
= $\frac{a^{u}}{4na} + c$
= $\frac{a^{u^{2}}}{4na} + c$
= $\frac{a^{u^{2}}}{4na} + c$
= $\frac{a^{u^{2}}}{4na} + c$
= $\frac{a^{u^{2}}}{4na} + c$
= $\frac{1}{4na} + c$
= $\frac{a^{u^{2}}}{4na} + c$
= $\frac{1}{4na} + c$
= $\frac{1}{4naa} + c$
= $\frac{1}{4naaa} + c$
= $\frac{1$

or (crowto) ad

-

E #] 10- -

*
$$\int \tan x dx = \ln |\sec x| + c$$

Read $= \int \frac{\sin x}{\cos x} dx$
 $= \int \frac{\sin x}{\cos x} dx$
 $= \int \frac{\pi}{\cos x} (-du)$
 $= -\int \frac{\pi}{u} du$
 $= -\ln |\tan + c$
 $= \ln |\cos x| + c$
 $= \ln |\sec x| + c$
 $= \ln |\sec x| + c$
 $= \ln |\sec x| + c$
 $\ln |\sec x| + \ln |\sec x| + \ln | + c$
 $\ln |\sec x| - \int \frac{\sec x}{\sec x} + \frac{\sec x}{\tan x} dx$
 $= \int \frac{\sec^2 x + \sec x}{\sec x} + \tan x}{\sec x} dx$
Let, $\ln = \sec x + \tan x}{dx = (\sec x + \tan x) + \sec^2 x) dx}$
 $= \int \frac{4}{\pi} du$
 $= \ln |\sec x + \tan x| + c$

Homework [Coseened = 1 n | coseen - cotx | + c Q. Jextanenda soln - Let u= en du = exdx = tanu du In Secul to $= \ln |\sec e^{2t}| + c$ Q. J Cosee²x dx 1+cotx dx soln -Let u = Ont 2 + cota du = - Cospe= ndx - du = cosoc2 n $= -\int \frac{1}{u} du$ = - la lul + c = - ln | 1+cotx | +c

Integration by parts

To integrate the function of two functions, we use the rule integration by parts.

 $\int \frac{1}{\sqrt{dx}} = \sqrt{\sqrt{dx}} - \int \left(\int \frac{d}{dx} \right) \frac{d}{dx} (v) dx$

1st function

= 2nd function X.Integral of 1st function - Integral of (Integral of 1st x derivative of 2nd)

Use 'ETALL 'to choose 1st function

- E: Exponential function
- T: Trigonometric function
- A : Algebraic function
- L: Logarothm function
- I : Inverse function

Antegrand	1st function	2nd function
-xnex	en	Xn
x" cosx	Cosa	nch
arlax	n(1)	ination ination
2n-lan-2-2	۶Xn	tan-1 a
tun-1-2	1 Second US	tan-1-x altorest

- Ex-Jacosada soln-1st function -> cosa 2nd function -> a
 - = $\pi \int \cos x \, dx \int (\int \cos x \, dx) \frac{dx}{dx} \, dx$
 - = $x \sin x \int \sin x \, dx$
 - = x sinx (- cosx) + c
 - = oksinx + cosx + c lans
- $Ex \int \frac{x^2}{v} \frac{e^x}{u} dx$ soln - 1st function $\rightarrow e^x$ 2^{ng} function $\rightarrow \pi^2$

$$= \pi^{2} \int e^{\chi} d\chi - \int (\int e^{\chi} d\chi) \frac{d}{d\chi} (\pi^{2}) d\chi$$

$$= \pi^{2} e^{\chi} - \int e^{\chi} 2\chi d\chi$$

$$= \pi^{2} e^{\chi} - 2 \int e^{\chi} \chi d\chi$$

$$= \pi^{2} e^{\chi} - 2 \left[\pi \int e^{\chi} d\chi - \int (\int e^{\chi} d\chi) \frac{d\eta}{d\chi} d\chi \right]$$

$$= \pi^{2} e^{\chi} - 2 \left[\pi \int e^{\chi} d\chi - \int (\int e^{\chi} d\chi) \frac{d\eta}{d\chi} d\chi \right]$$

has and

 $= x^{2}e^{\chi} - 2\pi e^{\chi} + 2e^{\chi} + c$ = $e^{\chi}(\pi^{2} - 2\pi + 2) + c$ [Ans]

ENGANCERING MATHEMATICS

* when sin-2, cot-2, tan-2, etc or log & is precent alone in the integrand take I as the 1st function. Ex- I tan-2 x dx soln - J1 tan 1 a da = (action $\cdot \frac{a^{\alpha_{N}}}{\alpha} = \int \frac{e^{\alpha_{N}}}{\alpha} (-b_{N} \alpha b_{N}) dN$ 200 = $\tan^{-2} x \int 1 dx - \int \int 1 dx \left(\frac{d}{dx} \left(\tan^{-3} x \right) dx \right)$ $= \tan^{-1} x \cdot x - \int x \frac{1}{1 + x^2} dx$ = $x \tan^{-1} - \int \frac{\alpha}{1 + x^2} dx$ * Lety u = 2 + x2. eduis " a to educe the stand of the stand " du= 2xdx an mini du = 2dx min - in allow the life is what was $= \pi \tan \frac{1}{2} = \int \frac{1}{u} \cdot \frac{du}{2} = \int \frac{$ $\chi \tan 2 \chi - \frac{1}{2} \int \frac{1}{u} du$ $x \tan 2 = \frac{4}{2} \ln |u| + c$ * logxdx igon (as 29 day (accessent sainow) + h Soln - I 1 log x da = logn fida - (Jida da (loga) da men in and Lagga × Logx - Jx. 1 dx = nlogn - fadr 1 Ams = $\pi \log x - x + c = x (\log x - 1) + c$

24/6/22

Honework,

$$\int (\ln x)^{2} dx$$

$$* \int e^{ax} \cos bx dx$$

$$soln - \cos bx \int e^{ax} dx - \int (\int e^{ax} dx) \frac{d}{x} (\cos bx dx)$$

$$= \cos bx \cdot \frac{e^{ax}}{a} - \int \frac{e^{ax}}{a} (-b\sin bx) dx$$

$$= \frac{e^{ax}}{a} (\cos bx + \frac{b}{a} \int e^{ax} \sinh x dx)$$

$$= \int e^{ax} (\cos bx + \frac{b}{a} \int e^{ax} \sinh x dx)$$

$$= \int e^{ax} (\cos bx + \frac{b}{a} \int e^{ax} \cosh x + \frac{b}{a^{2}} e^{ax} \sinh x dx)$$

$$= \int e^{ax} (\cosh x + \frac{b^{2}}{a} \int e^{ax} \cosh x dx + \frac{b}{a^{2}} e^{ax} \sinh x dx)$$

$$= \int e^{ax} (\cosh x dx + \frac{b^{2}}{a^{2}} \int e^{ax} \cosh x dx = \frac{e^{ax}}{a} (\cosh x dx + \frac{b}{a^{2}} e^{ax} \sinh x dx)$$

$$\Rightarrow \int e^{ax} (\cosh x dx + \frac{b^{2}}{a^{2}} \int e^{ax} \cosh x dx = \frac{e^{ax}}{a} (\cosh bx dx + \frac{b}{a^{2}} \int e^{ax} \cosh x dx + \frac{b}{a^{2}} e^{ax} \sinh x dx$$

$$\Rightarrow \int e^{ax} (\cosh bx dx) (1 + \frac{b^{2}}{a^{2}}) = e^{ax} \int \frac{(\cosh bx)}{a} + \frac{b}{a^{2}} \sinh x dx + \frac{b}{a^{2}} \cosh x dx + \frac{b^{2}}{a^{2} + b^{2}} (a (\cos bx + b \sin bx)) + tw k$$

$$fx - \int e^{3x} (\cos bx dx)$$

$$= \frac{e^{3x}}{a^{3} + b^{2}} (3\cos 2x + 2\sin 2x) + k$$

$$= \frac{e^{3x}}{a^{2}} (3\cos 2x + 2\sin 2x) + k$$

*
$$\int e^{ax} \sinh bx dx$$

= $\frac{a^{ax}}{a^{2}+b^{2}} (a \sinh bx - bcosbx) + k$
 $bx - \int e^{2x} \sin dx$
= $\frac{2^{2x}}{2^{2}+x^{2}} (2\sin x - (osx) + k)$
= $\frac{e^{2x}}{2^{2}+x^{2}} (2\sin x - (osx) + k)$
= $\frac{e^{2x}}{5} (2\sin x - (osx) + k)$
 $bx - \int dx^{2} - x^{2} dx$ Take $4as$ ds^{4} function.
 $ch - \int t + \sqrt{a^{2}-x^{2}} dx$
= $4\sqrt{a^{2}-x^{2}} + \int \frac{1}{\sqrt{a^{2}-x^{2}}} (x^{2} - x^{2}) dx$
= $4\sqrt{a^{2}-x^{2}} + \int \frac{1}{\sqrt{a^{2}-x^{2}}} (x^{2} - x^{2}) dx$
= $4\sqrt{a^{2}-x^{2}} + \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \int \frac{a^{2}-x^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} + a^{2} \int \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx - \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} dx = \frac{a}{\sqrt{a^{2}-x^{2}}} dx^{2} - \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx$
= $4\sqrt{a^{2}-x^{2}} dx = \frac{a}{\sqrt{a^{2}-x^{2}}} dx^{2} - \frac{a^{2}}{\sqrt{a^{2}-x^{2}}} dx^{2} - \frac{a^{2}}{\sqrt{a^{2}-x^{2}$

$$E_{x} = \int \sqrt{9 - x^{2}} \, dx$$

$$= \frac{x}{2} \sqrt{9 - x^{2}} + \frac{9}{2} \sin^{2} \frac{x}{3} + \kappa \qquad \text{Aris}$$

Definite integration

Integration is a process of summation. In this case the integration is called definite integration.

$$h = \frac{b-a}{n}$$

$$b \longrightarrow \text{Opper limit}$$

$$\int f(\alpha) d\alpha \longrightarrow \text{Definite integration}$$

$$\longrightarrow \text{Lower limit}$$

Fundamental theorem of integral calculus:

a)
$$f(x) dx = [f(x)]_a^b$$

$$= F(b) - F(a)$$

$$Ex - 2 \int \pi^2 d\pi$$

$$=\left[\frac{-\infty}{3}\right]_{\pm}^{2}$$

4

$$= \frac{1}{3} \begin{bmatrix} 2^{3} - 1^{3} \end{bmatrix}$$

$$= \frac{1}{3} (8 - 1) = \frac{7}{3} \qquad \text{[Ans]}$$

$$= \frac{1}{3} (8 - 1) = \frac{7}{3} \qquad \text{[Ans]}$$

$$= \frac{1}{3} \frac{dx}{1 + x^{2}}$$

$$= \begin{bmatrix} \tan^{-1} - \frac{1}{3} \end{bmatrix} = \frac{1}{3}$$

$$= \tan^{-1} - \tan^{-1} 0$$

$$= \tan^{-1} - \tan^{-1} 0$$

Elementary properties of definite integrals

and a service and the service wind an

(i)
$$a^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

1.

$$\binom{11}{a} \int f(x) dx = \int f(y) dy = \int f(z) dz$$

$$(ii) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx, a < c < b$$

$$\frac{5}{1} x^2 dx = \frac{3}{3} \Big|_{1}^{4} = \frac{64-1}{3} = \frac{63}{3} = 21$$

$$= \int_{2}^{2} \alpha^{2} d\alpha + \int_{2}^{3} \alpha^{2} d\alpha + \int_{3}^{4} \alpha^{2} d\alpha$$

$$= \frac{\chi^3}{3}\Big|_{1}^{2} + \frac{\chi^3}{3}\Big|_{2}^{3} + \frac{\chi^3}{3}\Big|_{3}^{4}$$

$$= \frac{7}{3} + \frac{19}{3} + \frac{37}{3} = \frac{63}{3} = 21$$

AREA UNDER PLANE CURVES

317122

Area enclosed by a curve and x - axis

$$A = \int_{\pi=0}^{b} f(x) dx$$

Ex - find the area of the region enclosed by $y = 9 - x^2$, y = 0 m the ordinates m = 0 and n = 2.

Soln -
$$A = \int_{0}^{2} f(x) dx$$

 $= \int_{0}^{2} (q - \pi^{2}) dx$
 $= \int_{0}^{2} q dx - \int_{0}^{2} \pi^{2} dx$
 $= q [\pi]^{2} - [\frac{\pi^{5}}{3}]^{2}$
 $= q (2 - 0) - \frac{1}{3} (8 - 0)$
 $= 18 - \frac{1}{3} \pi 8 = \frac{46}{3} \text{ sq. unit}$

Area of circle with the centre at origin Equation of circle with centre at origin. $x^2 + y^2 = r^2$ centre . (0,0) Vadius = r 10. Find the area of eithele $n^2 + y^2 = a^2$

 $Ans - x^2 + y^2 = a^2$ monthshi to we have an over the constitution Centre = (0,0)radius = a

Contraint Interneting should be

Law It and that the second

The Broker of the Denned Broker Ann

$$n^{2} + y^{2} = a^{2}$$

$$y^{2} = a^{2} - n^{2}$$

$$y = \sqrt{a^{2} - n^{2}}$$

so, Area in 1st quadrant = $\int 1a^2 - x^2 dx$

$$= \left[\frac{\pi}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-2} \frac{\pi}{2} \right]_0^a$$

$$=\frac{a^2}{2}\sin^{-1}(1)$$

$$= \frac{a^2}{2} \cdot \frac{J}{2} = \frac{a^2 J}{4} = \frac{J a^2}{4}$$

Area of circle

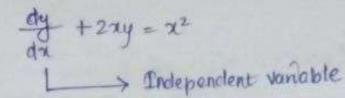
$$= 4 \times \frac{\pi a^2}{4}$$

= J1a² sq. unit 1 282 3

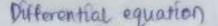
DEFFERENTIAL EQUATIONS

Equations involving derivative or differentials of dependent what with respect to independent variable are known as differential equations.

> Dependent variable



> xdy +ydx = 0



(Ordinary differential equation)

ODE

(partial differential equation)

PDE

Order of a differential equation

The order of the highest order derivative occuring in the equation is known as order of the differential equation.

Degree of a differential equation

This is the highest positive integral power of the derivative that determines the order of the equation.

It is determined after the equation is cleaned of tractional indias with regard to all derivatives involved and after the denominators are called of derivatives.

$$D_{1} - \frac{d^{2}y}{dx^{2}} + 2 \frac{dy}{dx} + xy = 0$$

soln -

Order = 2

$$\begin{aligned} & \# - \left(\frac{dy}{dx}\right)^{h} + y_{5} = \frac{d^{2}y}{dx^{2}} \\ & \text{selv} - 0 \text{ d}x = 3 \\ & \text{dgyree} = 1 \\ & \# - 0 \frac{d^{2}y}{dx^{2}} = \left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{\frac{5}{2}} \\ & \text{solv} - 0 \frac{d^{2}y}{dx^{2}} = \left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{\frac{5}{2}} \\ & \text{solv} - 5 \text{gyaring both sides}, \\ & \# - \left(\frac{d^{2}y}{dx^{2}}\right)^{\frac{5}{2}} = \left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{\frac{5}{2}} \\ & \text{Order} - 2 \\ & \text{Degree} - 2 \\ & \text{Order} - 2 \\ & \text{Degree} - 1 \\ & \text{Order} - 2 \\ & \text{Degree} - 1 \\ & \text{Order} - 4 \\ & \frac{d^{2}}{dx} = \frac{yt}{dt} \\ & = \left(\frac{d^{2}}{dt}\right)^{2} = y + \left(y + \frac{dy}{dt}\right) \\ & \text{Order} - 1 \\ & \text{Degree} - 2 \end{aligned}$$

Q.
$$\frac{d^2y}{du^2} = 3y + \frac{dy}{du}$$

 $\int \frac{d^2y}{du^2} = \frac{3y + \frac{dy}{du}}{\int \frac{d^2y}{du^2}}$
Soln $-\left(\frac{d^2y}{du^2}\right)^{\frac{3}{2}} = 3y + \frac{dy}{du}$

Squaring both sides,

du2

$$\left(\frac{d^2y}{du^2}\right)^3 = \left(3y + \frac{dy}{du}\right)^2$$

Order - 2
Degree - 3

solution of differential equation by separation of variable method

The process of collecting or functions of (x) with dx and all functions of y with dy is known as the process of separation of Variable.

$$Q \cdot \frac{dy}{dx} = f(x)$$

$$\Rightarrow \int dy = \int f(x) dx$$

 \neq y = f(x) + c \rightarrow General colution

$$0 \cdot \frac{dy}{dx} = f(y)$$

$$\Rightarrow \int \frac{dy}{f(y)} = \int dx.$$

$$\Rightarrow \int \frac{dy}{f(y)} = x + c$$

$$\begin{aligned} \mathbf{f} \mathbf{r} - \frac{dy}{dx} &= \mathbf{r}^{2} + 2\mathbf{x} + 5 \\ \text{adin} - dy &= (\mathbf{r}^{2} + 2\mathbf{x} + 5) d\mathbf{x} \\ \text{Now integrating both slides,} \\ \int dy &= \int (\mathbf{r}^{2} + 2\mathbf{x} + 5) d\mathbf{x} \\ y &= \frac{d^{3}}{2} + 2 \cdot \frac{d^{3}}{2} + 5 \cdot \mathbf{x} + c \\ \end{pmatrix} \\ \frac{dy}{dx} &= \frac{d^{3}}{2} + \mathbf{r}^{2} + 5 \cdot \mathbf{x} + c \\ \\ \mathbf{f} = \frac{dy}{dx} = + 4\mathbf{n} y \\ \text{Soln} - \frac{dy}{dx} = d\mathbf{x} \\ \text{Now integrating both slides,} \\ \int dy dy &= \int d\mathbf{x} \\ \text{Now integrating both slides,} \\ \int dy dy &= \int d\mathbf{x} \\ \text{a Jn I sing I } = \mathbf{x} + c \\ &= c^{2} \cdot c^{2} \\ &= Ac^{2} \quad \text{if } A = c^{2} \quad \text{Ims.} \\ \end{aligned}$$

$$\mathbf{F} = -\frac{dy}{dx} = -\frac{2y}{x^{2} + 1} \\ \mathbf{coh} = -\frac{dy}{dy} = -\frac{2}{x^{2} + 1} \\ \mathbf{coh} = -\frac{dy}{dy} = -\frac{2}{x^{2} + 1} \\ \mathbf{coh} = \frac{dy}{dy} = 2\int -\frac{1}{x^{2} + 1} d\mathbf{x} \\ \text{Now integrating both sides,} \\ \int \frac{dy}{dy} = 2\int -\frac{1}{x^{2} + 1} d\mathbf{x} \\ \text{A low integrating both sides,} \\ \int \frac{dy}{dy} = 2\int -\frac{1}{x^{2} + 1} d\mathbf{x} \\ \end{bmatrix}$$

$$\begin{aligned} fx - \frac{d^2y}{dx^2} &= 12x^2 + 2x \\ soln - \frac{d^2y}{dx^2} &= \frac{d}{dx} \left(\frac{dy}{dx} \right) \\ lot \frac{dy}{dx} &= p \\ \Rightarrow \frac{d^2y}{dx^2} &= \frac{dt}{dx} \\ \Rightarrow \frac{dt}{dx^2} &= 12x^2 + 2x \\ \Rightarrow \int dt &= \int (12x^2 + 2x) dx \\ \Rightarrow f &= \int (12x^2 + 2x) dx \\ \Rightarrow f &= 4x^2 \cdot \frac{x^3}{x} + x \cdot \frac{x^2}{x} + c \\ \Rightarrow f &= 4x^3 + x^2 + c \\ \Rightarrow f &= 4x^3 + x^2 + c \\ \Rightarrow \int dy &= \int (4x^3 + x^2 + c) dx \\ \Rightarrow y &= x^4 + \frac{x^3}{3} + cx + p \\ f &= \frac{d^2y}{dx^2} &= \frac{d}{dx} \left(\frac{dy}{dx} \right) \\ f &= \frac{d^2y}{dx^2} &= \frac{d}{dx} \left(\frac{dy}{dx} \right) \\ f &= \frac{d^2y}{dx^2} &= \frac{df}{dx} \\ \frac{df}{dx} &= sinx - cosx \\ \Rightarrow \int dp &= \int (sinx - cosx) dx \end{aligned}$$

+ 0

Ans

S and

+

Fr.

5

NO

8

la tat a

$$\begin{aligned} \mathbf{A} \mathbf{P} &= -\cos x - \sin x + c \\ \frac{dy}{dx} &= -\cos x - \sin x + c \\ \mathbf{A} &= -\cos x - \sin x + c \\ \mathbf{A} &= \int dy = \int (-\cos x - \sin x + c) dx \\ \mathbf{A} &= \int dy = \int (-\cos x + \sin x + c) dx \\ \mathbf{A} &= \int dy = -\sin x + \cos x + \cos x + c \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + c \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + c \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \cos x + \cos x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \int \frac{dy}{dx} = \sin x + \cos x + \cos x + \cos x \\ \mathbf{A} &= \int \frac{dy}{dx} = \int \frac{d$$

Linear differential equation

A differential equation is said to be linear if the dependent variable and it's differential co-efficients occurring in the equation are of degree one and are not multiplied together.

14

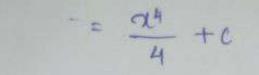
 $B = \frac{dy}{dx} + xy = 0$ linear equation

 $\frac{d^2y}{dx^2} + xy^2 = x^3$ Non-linear

 $\frac{d^2y}{dx^2} + y \cdot \frac{dy}{dx} = x^2$ Non - linear

$$\frac{d_{1}}{dx} + P(x)g = O(x) \longrightarrow \text{Jinear differential equation}$$
Where $P(x)$, $Q(x)$ are function of x .
How to solve
Integrating factor
 $\Delta F = Q \int dx$.
Solution is
 $g \Delta F = \int \Omega F \cdot O(x) dx + C$
 $Fa = (3+x^{2}) \frac{d_{1}}{dx} + 2xy - x^{3} = 0$
 $Soln = \frac{d_{1}}{dx} + \frac{2x}{24x^{2}} - \frac{x^{3}}{3+x^{2}} = 0$
 $\Rightarrow \frac{d_{1}}{dx} + \frac{2x}{24x^{2}} - \frac{x^{3}}{3+x^{2}}$
which is a linear equation.
Here, $F = \frac{2x}{24x^{2}} \int \Phi = \frac{x^{3}}{4+x^{2}}$
 $GF = Q \int dx$
 $= Q \int \frac{dx}{dx}$
 $= Q \int \frac{dx}{dx}$
 $= Q \int \frac{dx}{dx}$
 $= Q \int \frac{dx}{dx}$
 $= 2x dx$
 $= Q \ln u$
 $= Q \ln (3+x^{2})$
 $= 3 + x^{2}$
 $\Rightarrow \exists \cdot (3+x^{2}) = \int (1+x^{2}) \frac{x^{3}}{(3+x^{2})} dx + C$
 $= \int x^{3} dx + C$

Ť



 $\Rightarrow y = \frac{x^4}{4(1+x^2)} + \frac{c}{1+x^2}$ [Ans